Unveiling the Crucial Role of Chemical Enhancement in the SERS Analysis of Amphetamine-Metal Interactions on Gold and Silver Surfaces: Importance of Selective Amplification of the Narrow Interval of Vibrational Modes
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38450646
PubMed Central
PMC11007674
DOI
10.1021/acs.analchem.3c05189
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The use of addictive substances, including drugs, poses significant health risks and contributes to various social problems, such as increased crime rates associated with substance-induced aggressive behavior. To address these challenges, possession of addictive substances is legally prohibited. However, detecting and analyzing these substances remain a complex task for law enforcement, primarily due to the presence of adulterants or limited sample quantities. In response to the evolving illicit market, continuous development and adaptation of analytical techniques are essential. One approach is the utilization of surface-enhanced Raman scattering (SERS) spectroscopy, which involves adsorbing the analyte onto nanostructured plasmonic surfaces. This study explores the potential of SERS in detecting amphetamine-based addictive stimulants with a specific focus on the properties of enhancing surfaces chosen. Comparative investigations were performed using silver and gold surfaces, with gold colloidal systems demonstrating a favorable performance. Moreover, to provide a comprehensive interpretation of the measured spectra, extensive density functional theory (DFT) calculations were conducted, allowing for a deeper understanding of the observed spectral features and molecular interactions with the metal surfaces. This review presents insights into the role of chemical enhancement in SERS analysis of amphetamine-metal interactions, shedding light on the selective amplification of vibrational modes. These findings, supported by DFT calculations, have implications in the fields of spectroscopy, physical chemistry, and drug analysis, providing valuable contributions to forensic applications and a deeper understanding of chemical enhancement phenomena. We present the impact of the secondary resonances of Stokes-scattered photons. This illustrates the significance of recognizing the constraints of the frequently employed "E4" approximation, even in measurements involving multiple molecules rather than single molecules.
See more in PubMed
Jemelka L.Ochrana před škodlivými vlivy tabáku, alkoholu a návykových látek; C.H. Beck, 2011.
Lee N. K.; Jenner L.; Harney A.; Cameron J. Pharmacotherapy for amphetamine dependence: A systematic review. Drug Alcohol Depend. 2018, 191, 309–337. 10.1016/j.drugalcdep.2018.06.038. PubMed DOI
Mariotti K. C.; Rossato L. G.; Froehlich P. E.; Limberger R. P. Amphetamine-type medicines: a review of pharmacokinetics, pharmacodynamics, and toxicological aspects. Curr. Clin. Pharmacol. 2013, 8 (4), 350–357. 10.2174/15748847113089990052. PubMed DOI
Kranenburg R. F.; Verduin J.; de Ridder R.; Weesepoel Y.; Alewijn M.; Heerschop M.; Keizers P. H.; van Esch A.; van Asten A. C. Performance evaluation of handheld Raman spectroscopy for cocaine detection in forensic case samples. Drug Test. Anal. 2021, 13 (5), 1054–1067. 10.1002/dta.2993. PubMed DOI PMC
Procházka M.Surface-enhanced Raman Spectroscopy. Biological and Medical Physics, Biomedical Engineering; Springer, 2016.
Aroca R.Surface-enhanced Vibrational Spectroscopy; John Wiley & Sons, 2006.
Pérez-Jiménez A. I.; Lyu D.; Lu Z.; Liu G.; Ren B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 2020, 11 (18), 4563–4577. 10.1039/D0SC00809E. PubMed DOI PMC
Dendisová M.; Havránek L.; Ončák M.; Matějka P. In situ SERS study of azobenzene derivative formation from 4-aminobenzenethiol on gold, silver, and copper nanostructured surfaces: what is the role of applied potential and used metal?. J. Phys. Chem. C 2013, 117 (41), 21245–21253. 10.1021/jp4040985. DOI
Volochanskyi O.; Švecová M.; Prokopec V. Detection and identification of medically important alkaloids using the surface-enhanced Raman scattering spectroscopy. Spectrochim. Acta, Part A 2019, 207, 143–149. 10.1016/j.saa.2018.09.009. PubMed DOI
Ha Pham T. T.; Vu X. H.; Dien N. D.; Trang T. T.; Chi T. T. K.; Phuong P. H.; Nghia N. T. Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue. RSC Adv. 2022, 12 (13), 7850–7863. 10.1039/D2RA00620K. PubMed DOI PMC
Muthukumar D.; Shtenberg G. SERS-based immunosensor for E. coli contaminants detection in milk using silver-coated nanoporous silicon substrates. Talanta 2023, 254, 12413210.1016/j.talanta.2022.124132. PubMed DOI
Dendisová-Vyškovská M.; Kokaislová A.; Ončák M.; Matějka P. SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach. J. Mol. Struct. 2013, 1038, 19–28. 10.1016/j.molstruc.2013.01.023. DOI
Kopal I.; Švecová M.; Plicka M.; Dendisová M. Time dependent investigation of copper colloids SERS-activity. Mater. Today Commun. 2023, 35, 10572210.1016/j.mtcomm.2023.105722. DOI
Osawa M.; Matsuda N.; Yoshii K.; Uchida I. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J. Phys. Chem. A 1994, 98 (48), 12702–12707. 10.1021/j100099a038. DOI
Ye J.; Hutchison J. A.; Uji-i H.; Hofkens J.; Lagae L.; Maes G.; Borghs G.; Van Dorpe P. Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings. Nanoscale 2012, 4 (5), 1606–1611. 10.1039/c2nr11805j. PubMed DOI
Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E.; Boisen A.; Brolo A. G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14 (1), 28–117. 10.1021/acsnano.9b04224. PubMed DOI PMC
Etchegoin P. G.; Le Ru E. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10 (40), 6079–6089. 10.1039/b809196j. PubMed DOI
Kneipp J.; Kneipp H.; Kneipp K. SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 2008, 37 (5), 1052–1060. 10.1039/b708459p. PubMed DOI
Pienpinijtham P.; Kitahama Y.; Ozaki Y. Progress of tip-enhanced Raman scattering for the last two decades and its challenges in very recent years. Nanoscale 2022, 14 (14), 5265–5288. 10.1039/D2NR00274D. PubMed DOI
Bailo E.; Deckert V. Tip-enhanced Raman scattering. Chem. Soc. Rev. 2008, 37 (5), 921–930. 10.1039/b705967c. PubMed DOI
Richard-Lacroix M.; Zhang Y.; Dong Z.; Deckert V. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem. Soc. Rev. 2017, 46 (13), 3922–3944. 10.1039/C7CS00203C. PubMed DOI
Lombardi J. R.; Birke R. L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 2009, 42 (6), 734–742. 10.1021/ar800249y. PubMed DOI
Etchegoin P. G.; Le Ru E. C.. Basic Electromagnetic Theory of SERS. Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications; Wiley, 2010.
Yamamoto Y. S.; Ozaki Y.; Itoh T. Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J. Photochem. Photobiol., C 2014, 21, 81–104. 10.1016/j.jphotochemrev.2014.10.001. DOI
Kim J.; Jang Y.; Kim N.-J.; Kim H.; Yi G.-C.; Shin Y.; Kim M. H.; Yoon S. Study of chemical enhancement mechanism in non-plasmonic surface enhanced Raman spectroscopy (SERS). Front. Chem. 2019, 7, 58210.3389/fchem.2019.00582. PubMed DOI PMC
Yu X.; Cai H.; Zhang W.; Li X.; Pan N.; Luo Y.; Wang X.; Hou J. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano 2011, 5 (2), 952–958. 10.1021/nn102291j. PubMed DOI
Mary Y. S.; Mary Y. S.; Armaković S.; Armaković S. J.; Krátký M.; Vinsova J.; Baraldi C.; Gamberini M. C. Concentration and solvent dependent SERS, DFT, MD simulations and molecular docking studies of a thioxothiazolidine derivative with antimicrobial properties. J. Mol. Liq. 2021, 329, 11558210.1016/j.molliq.2021.115582. DOI
Nuntawong N.; Eiamchai P.; Somrang W.; Denchitcharoen S.; Limwichean S.; Horprathum M.; Patthanasettakul V.; Chaiya S.; Leelapojanaporn A.; Saiseng S.; et al. Detection of methamphetamine/amphetamine in human urine based on surface-enhanced Raman spectroscopy and acidulation treatments. Sens. Actuators, B 2017, 239, 139–146. 10.1016/j.snb.2016.07.129. DOI
Sägmüller B.; Schwarze B.; Brehm G.; Schneider S. Application of SERS spectroscopy to the identification of (3, 4-methylenedioxy) amphetamine in forensic samples utilizing matrix stabilized silver halides. Analyst 2001, 126 (11), 2066–2071. 10.1039/b105321n. PubMed DOI
Geng P.; Sun S.; Wang X.; Ma L.; Guo C.; Li J.; Guan M. Rapid and sensitive detection of amphetamine by SERS-based competitive immunoassay coupled with magnetic separation. Anal. Methods 2022, 14 (26), 2608–2615. 10.1039/D2AY00581F. PubMed DOI
Leopold N.; Lendl B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107 (24), 5723–5727. 10.1021/jp027460u. DOI
Tódor I. S.; Szabó L.; Marişca O. T.; Chiş V.; Leopold N. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature. J. Nanopart. Res. 2014, 16 (12), 274010.1007/s11051-014-2740-4. DOI
Kelesidis G. A.; Gao D.; Starsich F. H.; Pratsinis S. E. Light Extinction by Agglomerates of Gold Nanoparticles: A Plasmon Ruler for Sub-10 nm Interparticle Distances. Anal. Chem. 2022, 94 (13), 5310–5316. 10.1021/acs.analchem.1c05145. PubMed DOI PMC
Moskovits M. Surface selection rules. J. Chem. Phys. 1982, 77 (9), 4408–4416. 10.1063/1.444442. DOI
Lecomte S.; Matějka P.; Baron M. H. Correlation between Surface Enhanced Raman Scattering and Absorbance Changes in Silver Colloids. Evidence for the Chemical Enhancement Mechanism. Langmuir 1998, 14 (16), 4373–4377. 10.1021/la980094e. DOI