An epigenetic change in a moth is generated by temperature and transmitted to many subsequent generations mediated by RNA
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38451888
PubMed Central
PMC10919628
DOI
10.1371/journal.pone.0292179
PII: PONE-D-22-29568
Knihovny.cz E-zdroje
- MeSH
- epigeneze genetická MeSH
- lidé MeSH
- můry * genetika MeSH
- RNA MeSH
- sperma MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA MeSH
Epigenetic changes in sexually reproducing animals may be transmitted usually only through a few generations. Here we discovered a case where epigenetic change lasts 40 generations. This epigenetic phenomenon occurs in the short antennae (sa) mutation of the flour moth (Ephestia kuehniella). We demonstrate that is probably determined by a small RNA (e.g., piRNA, miRNA, tsRNA) and transmitted in this way to subsequent generations through the male and female gametes. The observed epigenetic change cancels sa mutation and creates a wild phenotype (a moth that appears to have no mutation). It persists for many generations (40 recorded). This epigenetic transgenerational effect (suppression homozygous mutation for short antennae) in the flour moth is induced by changes during ontogenetic development, such as increased temperature on pupae development, food, different salts in food, or injection of RNA from the sperm of already affected individuals into the eggs. The epigenetic effect may occasionally disappear in some individuals and/or progeny of a pair in the generation chain in which the effect transfers. We consider that the survival of RNA over many generations has adaptive consequences. It is mainly a response to environmental change that is transmitted to offspring via RNA. In this study, we test an interesting epigenetic effect with an unexpected length after 40 generations and test what is its cause. Such transfer of RNA to subsequent generations may have a greater evolutionary significance than previously thought. Based on some analogies, we also discuss of the connection with the SIR2 gene.
Department of Anthropology University of West Bohemia Pilsen Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Ministry of the Environment of the Czech Republic Praha Czech Republic
University of West Bohemia Centre of Biology Pilsen Czech Republic
Zobrazit více v PubMed
Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A, Fritz H, et al.. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 2012; 489:447–51; doi: 10.1038/nature11352 ; PubMed DOI PMC
Skinner MK. Environmental stress and epigenetic transgenerational inheritance. BMC Med. 2014; 12:153. doi: 10.1186/s12916-014-0153-y PubMed DOI PMC
Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet. 2016; 733–743. doi: 10.1038/nrg.2016.106 Epub 2016 Oct 3. PubMed DOI PMC
Rothi MH, Greer EL. From correlation to causation: The new frontier of transgenerational epigenetic inheritance. Bioessays. 2023; e2200118. doi: 10.1002/bies.202200118 Epub 2022 Nov 9. PubMed DOI PMC
Prather RS, Ross JW, Isom SC, Green JA. Transcriptional, post-transcriptional and epigenetic control of porcine oocyte maturation and embryogenesis. Soc Reprod Fertil Suppl. 2009;66:165–76. PubMed PMC
Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al.. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014. May;17(5):667–9. doi: 10.1038/nn.3695 Epub 2014; PubMed DOI PMC
Sun L, Mu Y, Xu L, Han X, Gu W, Zhang M. Transgenerational inheritance of wing development defects in Drosophila melanogaster induced by cadmium. Ecotoxicol Environ Saf. 2023. Jan 15;250:114486. doi: 10.1016/j.ecoenv.2022.114486 Epub 2022 Dec 30. . PubMed DOI
Mu Y, Hu X, Yang P, Sun L, Gu W, Zhang M. The effects of cadmium on the development of Drosophila and its transgenerational inheritance effects. Toxicology. 2021. Oct;462:152931. doi: 10.1016/j.tox.2021.152931 Epub 2021 Sep 8. . PubMed DOI
Brevik K, Lindström L, McKay SD, Chen YH. Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems. Curr Opin Insect Sci. 2018. Apr;26:34–40. doi: 10.1016/j.cois.2017.12.007 Epub 2018 Jan 4. . PubMed DOI
Colombo V, Pettigrove VJ, Golding LA, Hoffmann AA. Transgenerational effects of parental nutritional status on offspring development time, survival, fecundity, and sensitivity to zinc in Chironomus tepperi midges. Ecotoxicol Environ Saf. 2014. Dec;110:1–7. doi: 10.1016/j.ecoenv.2014.07.037 Epub 2014 Aug 29. . PubMed DOI
woo NAM, S. Comprehensive Regulatory MicroRNAs that Govern Epigenetic Machinery in Cancer https://ksn.or.kr/upload/journal/701525348/2017/701525348_2017_1514277222.pdf
Casas E, Vavouri T. Sperm epigenomics: challenges and opportunities. Front Genet. 2014; 5:330. doi: 10.3389/fgene.2014.00330 PubMed DOI PMC
Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, et al.. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res. 2012; 1609–12. doi: 10.1038/cr.2012.141 Epub 2012 Oct 9. PubMed DOI PMC
Bohacek J, Rassoulzadegan M. Sperm RNA: Quo vadis? Semin Cell Dev Biol. 2020; 123–130. doi: 10.1016/j.semcdb.2019.07.005 Epub 2019 Jul 12. . PubMed DOI
Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, et al.. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet. 2013. May;9(5):e1003498. doi: 10.1371/journal.pgen.1003498 Epub 2013; PubMed DOI PMC
Hotzy C, Fowler E, Kiehl B, Francis R, Mason J, Moxon S, et al.. Evolutionary history of sexual selection affects microRNA profiles in Drosophila sperm. Evolution. 2022. Feb;76(2):310–319. doi: 10.1111/evo.14411 Epub 2022 Jan 3. . PubMed DOI
Gainetdinov I, Colpan C, Cecchini K, Arif A, Jouravleva K, Albosta P, et al.. Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. Mol Cell. 2021. Dec 2;81(23):4826–4842.e8. doi: 10.1016/j.molcel.2021.09.012 Epub 2021 Oct 8. PubMed DOI PMC
Yang C, Zeng QX, Liu JC, Yeung WS, Zhang JV, Duan YG. Role of small RNAs harbored by sperm in embryonic development and offspring phenotype. Andrology. 2022; doi: 10.1111/andr.13347 Epub ahead of print. . PubMed DOI
Roschdi S, Yan J, Nomura Y, Escobar CA, Petersen RJ, Bingman CA, et al.. An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol. 2022; 29(11):1113–1121. doi: 10.1038/s41594-022-00854-z Epub 2022 Nov 9. . PubMed DOI PMC
Silva WTAF Otto SP, Immler S. Evolution of plasticity in production and transgenerational inheritance of small RNAs under dynamic environmental conditions. PLoS Genet. 2021; 17(5):e1009581. doi: 10.1371/journal.pgen.1009581 PubMed DOI PMC
Wagner KD, Wagner N, Ghanbarian H, Grandjean V, Gounon P, Cuzin F, et al.. (2008) RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell. 14(6):962–9. doi: 10.1016/j.devcel.2008.03.009 PubMed DOI
Grandjean V, Gounon P, Wagner N, Martin L, Wagner KD, Bernex F, et al.. The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development. 2009. Nov;136(21):3647–55. doi: 10.1242/dev.041061 . PubMed DOI
Forneck A, Walker MA, Blaich R. Ecological and genetic aspects of grape hylloxera Daktulosphaira vitifoliae Fitch (Hemiptera: Phylloxeridae) performance on rootstock hosts. Bulletin of Entomological Research 2001; 91: 445–451; ; PubMed
Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, and Cuzin F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 2006; 441: 469–74; doi: 10.1038/nature04674 ; PubMed DOI
Pavelka J, Koudelová J. 2001 Inheritance of a temperature-modified phenotype of the short antennae (sa) mutation in a moth, Ephestia kuehniella (Lepidoptera: Pyralidae). J Hered. 2001; 92: 234–42; doi: 10.1093/jhered/92.3.234 PubMed DOI
Rubin GM, and Spradling AC. Genetic transformation of Drosophila with transposable element vectors. Science 1982; 218: 348–53; doi: 10.1126/science.6289436 ; PubMed DOI
Pavelka J, Shimada K, Koštál V. TIMELESS: a link between fly’s circadian and photoperiodic clocks? Eur J Entomol. 2003; 100: 255–265;
Soloway PD. Genetics: paramutable possibilities. Nature 2006; 441: 413–4; doi: 10.1038/441413a ; PubMed DOI
Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol. 2022. Jul;127:121–132. doi: 10.1016/j.semcdb.2021.08.006 Epub 2021 Aug 21. PubMed DOI PMC
Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol. 2009; 84:131–76. doi: 10.1086/598822 PubMed DOI
de Vanssay A, Bougé AL, Boivin A, Hermant C, Teysset L, Delmarre V, et al.. Paramutation in Drosophila linked to emergence of a piRNA-producing locus. Nature. 2012. Oct 4;490(7418):112–5. doi: 10.1038/nature11416 Epub 2012 Aug 26. . PubMed DOI
Ronsseray S. Paramutation phenomena in non-vertebrate animals. Semin Cell Dev Biol. 2015. Aug;44:39–46. doi: 10.1016/j.semcdb.2015.08.009 Epub 2015 Aug 28. . PubMed DOI
Grentzinger T, Armenise C, Brun C, Mugat B, Serrano V, Pelisson A, et al.. piRNA-mediated transgenerational inheritance of an acquired trait. Genome Res. 2012. Oct;22(10):1877–88. doi: 10.1101/gr.136614.111 Epub 2012 May 3. PubMed DOI PMC
Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP, Cording AC, et al.. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 2012; 150: 88–99; doi: 10.1016/j.cell.2012.06.018 ; PubMed DOI PMC
Chown SL, Terblanche JS. Physiological Diversity in Insects: Ecological and Evolutionary Contexts. Adv In Insect Phys. 2006;33:50–152. doi: 10.1016/S0065-2806(06)33002-0 PubMed DOI PMC
Francis D., Diorio J., Liu D. and Meany M.J. 1999. Nongenomic transmission across generation of maternal behavior and stress responses in the rat. Science 286: 1155–1158. PubMed
Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet. 2003; 70–4. doi: 10.1038/ng1067 Epub 2002 Dec 16. . PubMed DOI
Dorn R, Krauss V, Reuter G, Saumweber H. The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc Natl Acad Sci U S A. 1993; 90(23):11376–80. doi: 10.1073/pnas.90.23.11376 PubMed DOI PMC
Loxdale H.D. Lushai G. Rapid changes in clonal lineages: the death of a ‘sacred cow’. Biological Journal of the Linnean Society 2003; 79: 3–16; doi: 10.1046/j.1095-8312.2003.00177.x DOI
Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (August 1994). Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. U.S.A. 91: 8324–8. doi: 10.1073/pnas.91.18.8324 PubMed DOI PMC
Pearl LH, Prodromou C. 2006 Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem. 2006; 75: 271–94. doi: 10.1146/annurev.biochem.75.103004.142738 ; PubMed DOI
Iwasaki S, Sasaki HM, Sakaguchi Y, Suzuki T, Tadakuma H, Tomari Y. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 2015; 521:533–6; doi: 10.1038/nature14254 ; PubMed DOI
Liebers R, Rassoulzadegan M, Lyko F. Epigenetic regulation by heritable RNA. PLoS Genet 2014; 10:e1004296; doi: 10.1371/journal.pgen.1004296 ; PubMed DOI PMC
Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al.. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012; 19: 900–5; doi: 10.1038/nsmb.2357 ; PubMed DOI
Yakovlev IA, Fossdal CG, Johnsen Ø. MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol. 2010; 187:1154–69; doi: 10.1111/j.1469-8137.2010.03341.x ; PubMed DOI
Biliya S. and Bulla L.A. Genomic imprinting: The influence of differential methylation in the two sexes. Experimental Biology and Medicine 2010; 235: 139–147; doi: 10.1258/ebm.2009.009251 ; PubMed DOI
Masnou C E, 2019 A role for heterochromatin and repetitive elements in epigenetic inheritance http://hdl.handle.net/10803/668338
Fei Y, Nyikó T, Molnar A. Non-perfectly matching small RNAs can induce stable and heritable epigenetic modifications and can be used as molecular markers to trace the origin and fate of silencing RNAs. Nucleic Acids Res. 2021; 49(4):1900–1913. doi: 10.1093/nar/gkab023 PubMed DOI PMC
Sato F., Tsuchiya S., Meltzer S.J., Shimizu K. MicroRNAs and epigenetics. FEBS JOURNAL 2011; 278: 1598–1609; doi: 10.1111/j.1742-4658.2011.08089.x ; PubMed DOI
Wei J., Xie L., Taron M., Rose R., Liu B.R. 2010 Epigenetic alterations of tumor marker microRNAs: towards new cancer therapies. Drug News Perspect. 2010; 23: 655–61; doi: 10.1358/dnp.2010.23.10.1560143 PubMed DOI
Richard G, Le Trionnaire G, Danchin E, Sentis A. Epigenetics and insect polyphenism: mechanisms and climate change impacts. Curr Opin Insect Sci. 2019. Oct;35:138–145. doi: 10.1016/j.cois.2019.06.013 Epub 2019 Jul 31. . PubMed DOI
Petrella LN, Wang W, Spike CA, Rechtsteiner A, Reinke V, Strome S. synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival. Development 2011; 138:1069–79; doi: 10.1242/dev.059501 ; PubMed DOI PMC
Sonneborn A, Tebarth B, Ernst J. Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect. Immu. 1999; 67: 4655–4660; doi: 10.1128/IAI.67.9.4655-4660.1999 ; PubMed DOI PMC
Zordan R.E., Galgoczy D.J., Johnson A.D. Epigenetic properties of white–opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci USA. 2006; 103:12807–12812; doi: 10.1073/pnas.0605138103 ; PubMed DOI PMC
Pérez-Martín J, Uría JA, Johnson AD. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 1999; 18: 2580–92; doi: 10.1093/emboj/18.9.2580 ; PubMed DOI PMC
Sherman JM, Stone EM, Freeman-Cook LL, Brachmann CB, Boeke JD, Pillus L. The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell. 1999;10: 3045–59; doi: 10.1091/mbc.10.9.3045 PubMed DOI PMC
Balcerczyk A, Pirola L. Therapeutic potential of activators and inhibitors of sirtuins. Biofactors. 2010; 36: 383–93. doi: 10.1002/biof.112 ; PubMed DOI
Sinclair D. A.; Guarente L. Unlocking the Secrets of Longevity Genes. Scientific American. 2006; 294: 48–51, 54–7. doi: 10.1038/scientificamerican0306-48 PubMed DOI
Ralser M, Michel S, Breitenbach M. Sirtuins as regulators of the yeast metabolic network. Front Pharmacol. 2012;3: 32; doi: 10.3389/fphar.2012.00032 ; PubMed DOI PMC
Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics 2012; 11: 60–76; doi: 10.1074/mcp.A111.015156 ; PubMed DOI PMC
Koudelová J., Cook P. Effect of gamma radiation and sex-linked recessive lethal mutations on sperm transfer in Ephestia kuehniella (Lepidoptera: Pyralidae). Florida Entomologist 2001. 84: 172–182.