Skeletal Muscle Electrical Stimulation Prevents Progression of Disuse Muscle Atrophy via Forkhead Box O Dynamics Mediated by Phosphorylated Protein Kinase B and Peroxisome Proliferator-Activated Receptor gamma Coactivator-1alpha
Language English Country Czech Republic Media print
Document type Journal Article
PubMed
38466009
PubMed Central
PMC11019614
DOI
10.33549/physiolres.935157
PII: 935157
Knihovny.cz E-resources
- MeSH
- Muscle, Skeletal metabolism MeSH
- RNA, Messenger metabolism MeSH
- PPAR gamma metabolism MeSH
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha metabolism MeSH
- Proto-Oncogene Proteins c-akt * metabolism MeSH
- Muscular Atrophy prevention & control genetics metabolism MeSH
- Muscle Proteins metabolism MeSH
- Transcription Factors * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Messenger MeSH
- PPAR gamma MeSH
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha MeSH
- Proto-Oncogene Proteins c-akt * MeSH
- Muscle Proteins MeSH
- Transcription Factors * MeSH
Although electrical muscle stimulation (EMS) of skeletal muscle effectively prevents muscle atrophy, its effect on the breakdown of muscle component proteins is unknown. In this study, we investigated the biological mechanisms by which EMS-induced muscle contraction inhibits disuse muscle atrophy progression. Experimental animals were divided into a control group and three experimental groups: immobilized (Im; immobilization treatment), low-frequency (LF; immobilization treatment and low-frequency muscle contraction exercise), and high-frequency (HF; immobilization treatment and high-frequency muscle contraction exercise). Following the experimental period, bilateral soleus muscles were collected and analyzed. Atrogin-1 and Muscle RING finger 1 (MuRF-1) mRNA expression levels were significantly higher for the experimental groups than for the control group but were significantly lower for the HF group than for the Im group. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNA and protein expression levels in the HF group were significantly higher than those in the Im group, with no significant differences compared to the Con group. Both the Forkhead box O (FoxO)/phosphorylated FoxO and protein kinase B (AKT)/phosphorylated AKT ratios were significantly lower for the Im group than for the control group and significantly higher for the HF group than for the Im group. These results, the suppression of atrogin-1 and MuRF-1 expression for the HF group may be due to decreased nuclear expression of FoxO by AKT phosphorylation and suppression of FoxO transcriptional activity by PGC-1alpha. Furthermore, the number of muscle contractions might be important for effective EMS.
See more in PubMed
Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ. Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review. Front Physiol. 2016;7:361. doi: 10.3389/fphys.2016.00361. PubMed DOI PMC
Graham ZA, Lavin KM, O’Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, et al. Mechanisms of exercise as a preventative measure to muscle wasting. Am J Physiol Cell Physiol. 2021;321:C40–C57. doi: 10.1152/ajpcell.00056.2021. PubMed DOI PMC
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2020;12:e1462. doi: 10.1002/wsbm.1462. PubMed DOI PMC
Thomason DB, Booth FW. Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol (1985) 1990;68:1–12. doi: 10.1152/jappl.1990.68.1.1. PubMed DOI
Phillips SM, McGlory C. CrossTalk proposal: The dominant mechanism causing disuse muscle atrophy is decreased protein synthesis. J Physiol. 2014;592:5341–5343. doi: 10.1113/jphysiol.2014.273615. PubMed DOI PMC
Atherton PJ, Greenhaff PL, Phillips SM, Bodine SC, Adams CM, Lang CH. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. Am J Physiol Endocrinol Metab. 2016;311:E594–E604. doi: 10.1152/ajpendo.00257.2016. PubMed DOI PMC
Sanchez AM, Candau RB, Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2014;71:1657–1671. doi: 10.1007/s00018-013-1513-z. PubMed DOI PMC
Chen K, Gao P, Li Z, Dai A, Yang M, Chen S, Su J, et al. Forkhead Box O Signaling Pathway in Skeletal Muscle Atrophy. Am J Pathol. 2022;192:1648–1657. doi: 10.1016/j.ajpath.2022.09.003. PubMed DOI
Vainshtein A, Sandri M. Signaling Pathways That Control Muscle Mass. Int J Mol Sci. 2020;21:4759. doi: 10.3390/ijms21134759. PubMed DOI PMC
Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6:25–39. doi: 10.1242/dmm.010389. PubMed DOI PMC
Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells. 2020;9:1970. doi: 10.3390/cells9091970. PubMed DOI PMC
Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14:395–403. doi: 10.1016/S1097-2765(04)00211-4. PubMed DOI
Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002;16:1879–1886. doi: 10.1096/fj.02-0367com. PubMed DOI
Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52:2874–2881. doi: 10.2337/diabetes.52.12.2874. PubMed DOI
Brault JJ, Jespersen JG, Goldberg AL. Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem. 2010;285:19460–19471. doi: 10.1074/jbc.M110.113092. PubMed DOI PMC
Allen DL, Bandstra ER, Harrison BC, Thorng S, Stodieck LS, Kostenuik PJ, Morony S, et al. Effects of spaceflight on murine skeletal muscle gene expression. J Appl Physiol (1985) 2009;106:582–595. doi: 10.1152/japplphysiol.90780.2008. PubMed DOI PMC
Cannavino J, Brocca L, Sandri M, Bottinelli R, Pellegrino MA. PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice. J Physiol. 2014;592:4575–4589. doi: 10.1113/jphysiol.2014.275545. PubMed DOI PMC
Kang C, Ji LL. PGC-1α overexpression via local transfection attenuates mitophagy pathway in muscle disuse atrophy. Free Radic Biol Med. 2016;93:32–40. doi: 10.1016/j.freeradbiomed.2015.12.032. PubMed DOI
Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, et al. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A. 2006;103:16260–16265. doi: 10.1073/pnas.0607795103. PubMed DOI PMC
Qin W, Pan J, Wu Y, Bauman W, Cardozo C. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1a. Biochem Biophys Res Commun. 2010;403:473–478. doi: 10.1016/j.bbrc.2010.11.061. PubMed DOI
Booth FW, Gollnick PD. Effects of disuse on the structure and function of skeletal muscle. Med Sci Sports Exerc. 1983;15:415–420. doi: 10.1249/00005768-198315050-00013. PubMed DOI
Mirzoev TM. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int J Mol Sci. 2020;21:7940. doi: 10.3390/ijms21217940. PubMed DOI PMC
Jones S, Man WD, Gao W, Higginson IJ, Wilcock A, Maddocks M. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2016;10:CD009419. doi: 10.1002/14651858.CD009419.pub3. PubMed DOI PMC
Maffiuletti NA, Green DA, Vaz MA, Dirks ML. Neuromuscular Electrical Stimulation as a Potential Countermeasure for Skeletal Muscle Atrophy and Weakness During Human Spaceflight. Front Physiol. 2019;10:1031. doi: 10.3389/fphys.2019.01031. PubMed DOI PMC
Nader GA, Esser KA. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol (1985) 2001;90:1936–1942. doi: 10.1152/jappl.2001.90.5.1936. PubMed DOI
Dow DE, Faulkner JA, Dennis RG. Distribution of rest periods between electrically generated contractions in denervated muscles of rats. Artif Organs. 2005;29:432–435. doi: 10.1111/j.1525-1594.2005.29086.x. PubMed DOI
Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012;85:201–215. doi: 10.1016/j.jelekin.2011.12.005. PubMed DOI PMC
Sillen MJ, Franssen FM, Gosker HR, Wouters EF, Spruit MA. Metabolic and structural changes in lower-limb skeletal muscle following neuromuscular electrical stimulation: a systematic review. PLoS One. 2013;8:e69391. doi: 10.1371/journal.pone.0069391. PubMed DOI PMC
de Freitas GR, Santo CCDE, de Machado-Pereira NAMM, Bobinski F, Dos Santos ARS, Ilha J. Early Cyclical Neuromuscular Electrical Stimulation Improves Strength and Trophism by Akt Pathway Signaling in Partially Paralyzed Biceps Muscle After Spinal Cord Injury in Rats. Phys Ther. 2018;98:172–181. doi: 10.1093/ptj/pzx116. PubMed DOI
Russo TL, Peviani SM, Durigan JL, Gigo-Benato D, Delfino GB, Salvini TF. Stretching and electrical stimulation reduce the accumulation of MyoD, myostatin and atrogin-1 in denervated rat skeletal muscle. J Muscle Res Cell Motil. 2010;31:45–57. doi: 10.1007/s10974-010-9203-z. PubMed DOI
Dupont E, Cieniewski-Bernard C, Bastide B, Stevens L. Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK. Am J Physiol Regul Integr Comp Physiol. 2011;300:R408–R417. doi: 10.1152/ajpregu.00793.2009. PubMed DOI
Dirks ML, Wall BT, Snijders T, Ottenbros CL, Verdijk LB, van Loon LJ. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol (Oxf) 2014;210:628–641. doi: 10.1111/apha.12200. PubMed DOI
Oga S, Goto K, Sakamoto J, Honda Y, Sasaki R, Ishikawa K, Kataoka H, et al. Mechanisms underlying immobilization-induced muscle pain in rats. Muscle Nerve. 2020;61:662–670. doi: 10.1002/mus.26840. PubMed DOI
Honda Y, Tanaka N, Kajiwara Y, Kondo Y, Kataoka H, Sakamoto J, Akimoto R, et al. Effect of belt electrode-skeletal muscle electrical stimulation on immobilization-induced muscle fibrosis. PLoS One. 2021;16:e0244120. doi: 10.1371/journal.pone.0244120. PubMed DOI PMC
Hintz CS, Coyle EF, Kaiser KK, Chi MM, Lowry OH. Comparison of muscle fiber typing by quantitative enzyme assays and by myosin ATPase staining. J Histochem Cytochem. 1984;32:655–660. doi: 10.1177/32.6.6202737. PubMed DOI
Ohira Y, Yoshinaga T, Nomura T, Kawano F, Ishihara A, Nonaka I, Roy RR, et al. Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number. Adv Space Res. 2002;30:777–781. doi: 10.1016/S0273-1177(02)00395-2. PubMed DOI
Zhong H, Roy RR, Siengthai B, Edgerton VR. Effects of inactivity on fiber size and myonuclear number in rat soleus muscle. J Appl Physiol (1985) 2005;99:1494–1499. doi: 10.1152/japplphysiol.00394.2005. PubMed DOI
Wang J, Wang F, Zhang P, Liu H, He J, Zhang C, Fan M, et al. PGC-1α over-expression suppresses the skeletal muscle atrophy and myofiber-type composition during hindlimb unloading. Biosci Biotechnol Biochem. 2017;81:500–513. doi: 10.1080/09168451.2016.1254531. PubMed DOI
Canon F, Goubel F, Guezennec CY. Effects of chronic low frequency stimulation on contractile and elastic properties of hindlimb suspended rat soleus muscle. Eur J Appl Physiol Occup Physiol. 1998;77:118–124. doi: 10.1007/s004210050309. PubMed DOI
Boonyarom O, Kozuka N, Matsuyama K, Murakami S. Effect of electrical stimulation to prevent muscle atrophy on morphologic and histologic properties of hindlimb suspended rat hindlimb muscles. Am J Phys Med Rehabil. 2009;88:719–726. doi: 10.1097/PHM.0b013e31818e02d6. PubMed DOI
Dow DE, Cederna PS, Hassett CA, Kostrominova TY, Faulkner JA, Dennis RG. Number of contractions to maintain mass and force of a denervated rat muscle. Muscle Nerve. 2004;30:77–86. doi: 10.1002/mus.20054. PubMed DOI
Valero-Breton M, Warnier G, Castro-Sepulveda M, Deldicque L, Zbinden-Foncea H. Acute and Chronic Effects of High Frequency Electric Pulse Stimulation on the Akt/mTOR Pathway in Human Primary Myotubes. Front Bioeng Biotechnol. 2020;8:565679. doi: 10.3389/fbioe.2020.565679. PubMed DOI PMC