Titanium-Doped Diamond-like Carbon Layers as a Promising Coating for Joint Replacements Supporting Osteogenic Differentiation of Mesenchymal Stem Cells

. 2024 Feb 29 ; 25 (5) : . [epub] 20240229

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38474083

Grantová podpora
20-01570S Czech Science Foundation
Praemium Academiae grant No. 2202 Czech Academy of Sciences
CZ.02.01.01/00/22_008/0004631 Ministry of Education Youth and Sports
CZ.02.01.01/00/22_008/0004562 Ministry of Education Youth and Sports

Diamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.4, 2.1, 3.7, 6.6, and 12.8 at.% of Ti) were prepared by dual pulsed laser deposition, and pure DLC, glass, and polystyrene (PS) were used as controls. In vitro cell-material interactions were investigated with an emphasis on cell adhesion, proliferation, and osteogenic differentiation. We observed slightly increasing roughness and contact angle and decreasing surface free energy on Ti-DLC layers with increasing Ti content. Three-week biological experiments were performed using adipose tissue-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (bmMSCs) in vitro. The cell proliferation activity was similar or slightly higher on the Ti-doped materials than on glass and PS. Osteogenic cell differentiation on all materials was proved by collagen and osteocalcin production, ALP activity, and Ca deposition. The bmMSCs exhibited greater initial proliferation potential and an earlier onset of osteogenic differentiation than the ADSCs. The ADSCs showed a slightly higher formation of focal adhesions, higher metabolic activity, and Ca deposition with increasing Ti content.

Zobrazit více v PubMed

Bohara S., Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: A review. Biomater. Res. 2022;26:26. doi: 10.1186/s40824-022-00269-3. PubMed DOI PMC

Chen Q., Thouas G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015;87:1–57. doi: 10.1016/j.mser.2014.10.001. DOI

Goodman S.B., Yao Z., Keeney M., Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34:3174–3183. doi: 10.1016/j.biomaterials.2013.01.074. PubMed DOI PMC

Ohtake N., Hiratsuka M., Kanda K., Akasaka H., Tsujioka M., Hirakuri K., Hirata A., Ohana T., Inaba H., Kano M., et al. Properties and Classification of Diamond-Like Carbon Films. Materials. 2021;14:315. doi: 10.3390/ma14020315. PubMed DOI PMC

Birkett M., Zia A.W., Devarajan D.K., Soni, Panayiotidis M.I., Joyce T.J., Tambuwala M.M., Serrano-Aroca Á. Multi-functional bioactive silver- and copper-doped diamond-like carbon coatings for medical implants. Acta Biomater. 2023;167:54–68. doi: 10.1016/j.actbio.2023.06.037. PubMed DOI

Goodman S.B., Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J. Clin. Med. 2019;8:2091. doi: 10.3390/jcm8122091. PubMed DOI PMC

Abu-Amer Y., Darwech I., Clohisy J.C. Aseptic loosening of total joint replacements: Mechanisms underlying osteolysis and potential therapies. Arthritis Res. Ther. 2007;9((Suppl. 1)):S6. doi: 10.1186/ar2170. PubMed DOI PMC

Amirtharaj Mosas K.K., Chandrasekar A.R., Dasan A., Pakseresht A., Galusek D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels. 2022;8:323. doi: 10.3390/gels8050323. PubMed DOI PMC

Roy R.K., Lee K.R. Biomedical applications of diamond-like carbon coatings: A review. J. Biomed. Mater. Res. B Appl. Biomater. 2007;83:72–84. doi: 10.1002/jbm.b.30768. PubMed DOI

Grill A. Diamond-like carbon coatings as biocompatible materials–an overview. Diam. Relat. Mater. 2003;12:166–170. doi: 10.1016/S0925-9635(03)00018-9. DOI

Park S.J., Lee K.R., Ahn S.H., Kim J.G. Instability of diamond-like carbon (DLC) films during sliding in aqueous environment. Diam. Relat. Mater. 2008;17:247–251. doi: 10.1016/j.diamond.2007.12.035. DOI

Hanawa T. Titanium-Tissue Interface Reaction and Its Control With Surface Treatment. Front. Bioeng. Biotechnol. 2019;7:170. doi: 10.3389/fbioe.2019.00170. PubMed DOI PMC

Wachesk C.C., Seabra S.H., Dos Santos T.A.T., Trava-Airoldi V.J., Lobo A.O., Marciano F.R. In vivo biocompatibility of diamond-like carbon films containing TiO(2) nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med. 2021;32:117. doi: 10.1007/s10856-021-06596-6. PubMed DOI PMC

Wang Q., Zhou F., Zhou Z., Yang Y., Yan C., Wang C., Zhang W., Li L.K.-Y., Bello I., Lee S.-T. Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication. Diam. Relat. Mater. 2012;25:163–175. doi: 10.1016/j.diamond.2012.03.005. DOI

Zhang M., Xie T., Qian X., Zhu Y., Liu X. Mechanical Properties and Biocompatibility of Ti-doped Diamond-like Carbon Films. ACS Omega. 2020;5:22772–22777. doi: 10.1021/acsomega.0c01715. PubMed DOI PMC

Jelínek M., Zemek J., Remsa J., Mikšovský J., Kocourek T., Písařík P., Trávníčková M., Filová E., Bačáková L. Hybrid laser technology and doped biomaterials. Appl. Surf. Sci. 2017;417:73–83. doi: 10.1016/j.apsusc.2017.03.103. DOI

Jelinek M., Kocourek T., Zemek J., Mikšovský J., Kubinová Š., Remsa J., Kopeček J., Jurek K. Chromium-doped DLC for implants prepared by laser-magnetron deposition. Mater. Sci. Eng. C. 2015;46:381–386. doi: 10.1016/j.msec.2014.10.035. PubMed DOI

Qiang L., Zhang B., Zhou Y., Zhang J. Improving the internal stress and wear resistance of DLC film by low content Ti doping. Solid State Sci. 2013;20:17–22. doi: 10.1016/j.solidstatesciences.2013.03.003. DOI

Tsai P.-C., Hwang Y.-F., Chiang J.-Y., Chen W.-J. The effects of deposition parameters on the structure and properties of titanium-containing DLC films synthesized by cathodic arc plasma evaporation. Surf. Coat. Technol. 2008;202:5350–5355. doi: 10.1016/j.surfcoat.2008.06.073. DOI

Xiang Y., Cheng-Biao W., Yang L., De-Yang Y., Zhi-Qiang F. Cr-doped DLC films in three mid-frequency dual-magnetron power modes. Surf. Coat. Technol. 2006;200:6765–6769. doi: 10.1016/j.surfcoat.2005.10.018. DOI

Jelínek M., Zemek J., Kocourek T., Remsa J., Miksovsky J., Písarík P., Jurek K., Tolde Z., Trávnícková M., Vandrovcová M., et al. Dual laser deposition of Ti: DLC composite for implants. Laser Phys. 2016;26:105605. doi: 10.1088/1054-660X/26/10/105605. DOI

Knight M.N., Hankenson K.D. Mesenchymal Stem Cells in Bone Regeneration. Adv. Wound Care. 2013;2:306–316. doi: 10.1089/wound.2012.0420. PubMed DOI PMC

Lin W., Xu L., Zwingenberger S., Gibon E., Goodman S.B., Li G. Mesenchymal stem cells homing to improve bone healing. J. Orthop. Transl. 2017;9:19–27. doi: 10.1016/j.jot.2017.03.002. PubMed DOI PMC

Iaquinta M.R., Mazzoni E., Bononi I., Rotondo J.C., Mazziotta C., Montesi M., Sprio S., Tampieri A., Tognon M., Martini F. Adult Stem Cells for Bone Regeneration and Repair. Front. Cell Dev. Biol. 2019;7:268. doi: 10.3389/fcell.2019.00268. PubMed DOI PMC

Mende W., Götzl R., Kubo Y., Pufe T., Ruhl T., Beier J.P. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering. Cells. 2021;10:975. doi: 10.3390/cells10050975. PubMed DOI PMC

Le Q., Madhu V., Hart J.M., Farber C.R., Zunder E.R., Dighe A.S., Cui Q. Current evidence on potential of adipose derived stem cells to enhance bone regeneration and future projection. World J. Stem Cells. 2021;13:1248–1277. doi: 10.4252/wjsc.v13.i9.1248. PubMed DOI PMC

Bayón R., Igartua A., González J.J., Ruiz de Gopegui U. Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys. Tribol. Int. 2015;88:115–125. doi: 10.1016/j.triboint.2015.03.007. DOI

Zhao Y.Y., Zhao B., Su X., Zhang S., Wang S., Keatch R., Zhao Q. Reduction of bacterial adhesion on titanium-doped diamond-like carbon coatings. Biofouling. 2018;34:26–33. doi: 10.1080/08927014.2017.1403592. PubMed DOI

Przekora A., Vandrovcova M., Travnickova M., Pajorova J., Molitor M., Ginalska G., Bacakova L. Evaluation of the potential of chitosan/β-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface. Biomed. Mater. 2017;12:015030. doi: 10.1088/1748-605X/aa56f9. PubMed DOI

Travnickova M., Vandrovcova M., Filova E., Steinerova M., Rackova J., Kocourek T., Bartova J., Suchy T., Zaloudkova M., Jelinek M., et al. Effect of diamond-like carbon doped with chromium on cell differentiation, immune activation and apoptosis. Eur. Cell Mater. 2020;40:276–302. doi: 10.22203/eCM.v040a17. PubMed DOI

Li X., Klausen L.H., Zhang W., Jahed Z., Tsai C.T., Li T.L., Cui B. Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis. Nano Lett. 2021;21:8518–8526. doi: 10.1021/acs.nanolett.1c01934. PubMed DOI PMC

Oates C.J., Wen W., Hamilton D.W. Role of Titanium Surface Topography and Surface Wettability on Focal Adhesion Kinase Mediated Signaling in Fibroblasts. Materials. 2011;4:893–907. doi: 10.3390/ma4050893. PubMed DOI PMC

Argentati C., Morena F., Montanucci P., Rallini M., Basta G., Calabrese N., Calafiore R., Cordellini M., Emiliani C., Armentano I., et al. Surface Hydrophilicity of Poly(l-Lactide) Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture. Polymers. 2018;10:140. doi: 10.3390/polym10020140. PubMed DOI PMC

Rampichová M., Chvojka J., Jenčová V., Kubíková T., Tonar Z., Erben J., Buzgo M., Daňková J., Litvinec A., Vocetková K., et al. The combination of nanofibrous and microfibrous materials for enhancement of cell infiltration and in vivo bone tissue formation. Biomed. Mater. 2018;13:025004. doi: 10.1088/1748-605X/aa9717. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace