Environmental Assessment of Dryland and Irrigated Winter Wheat Cultivation under Compost Fertilization Strategies

. 2024 Feb 12 ; 13 (4) : . [epub] 20240212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38498489

Grantová podpora
GAJU 085/2022/Z University of South Bohemia in České Budějovice

Wheat (Triticum aestivum L.) is a strategic agricultural crop that plays a significant role in maintaining national food security and sustainable economic development. Increasing technical performance considering lowering costs, energy, and environmental consequences are significant aims for wheat cultivation. For drylands, which cover approximately 41% of the world's land surface, water stress has a considerable negative impact on crop output. The current study aimed to assess the environmental aspects of chemical fertilizer in combination with compost in dryland and irrigated winter wheat production systems through life cycle assessment (LCA). The cradle-to-farm gate was considered as the system boundary based on one tone of wheat yield and four strategies: D-C (dryland with compost), D (dryland without compost), I-C (irrigated with compost), and I (irrigated without compost). Based on the results, the highest and lowest amounts of wheat yield were related to the I-C and D strategies with 12.2 and 6.7 ton ha-1, respectively. The LCA result showed that the I strategy in comparison with other strategies had the highest negative impact on human health (49%), resources (59%), ecosystem quality (44%), and climate change (43%). However, the D-C strategy resulted in the lowest adverse effect of 6% on human health, 1% on resources, 10% on ecosystem quality, and 11% on climate change. Utilizing a combination of fertilizer and compost in dryland areas could ensure a higher yield of crops in addition to alleviating negative environmental indicators.

Zobrazit více v PubMed

Yang W., Chang F., Ma D., Wang S., Yin L. Subsoil Water Use to Attain Stable High Yields of Winter Wheat in Drylands Loess Plateau of China. Eur. J. Agron. 2022;139:126558. doi: 10.1016/j.eja.2022.126558. DOI

Shan A., Pan J., Kang K.J., Pan M., Wang G., Wang M., He Z., Yang X. Effects of Straw Return with N Fertilizer Reduction on Crop Yield, Plant Diseases and Pests and Potential Heavy Metal Risk in a Chinese Rice Paddy: A Field Study of 2 Consecutive Wheat-Rice Cycles. Environ. Pollut. 2021;288:117741. doi: 10.1016/j.envpol.2021.117741. PubMed DOI

Verdi L., Marta A.D., Falconi F., Orlandini S., Mancini M. Comparison between Organic and Conventional Farming Systems Using Life Cycle Assessment (LCA): A Case Study with an Ancient Wheat Variety. Eur. J. Agron. 2022;141:126638. doi: 10.1016/j.eja.2022.126638. DOI

Mu L., Su K., Zhou T., Yang H. Yield Performance, Land and Water Use, Economic Profit of Irrigated Spring Wheat/Alfalfa Intercropping in the Inland Arid Area of Northwestern China. Field Crops Res. 2023;303:109116. doi: 10.1016/j.fcr.2023.109116. DOI

Zingale S., Guarnaccia P., Matarazzo A., Lagioia G., Ingrao C. A Systematic Literature Review of Life Cycle Assessments in the Durum Wheat Sector. Sci. Total Environ. 2022;844:157230. doi: 10.1016/j.scitotenv.2022.157230. PubMed DOI

Soto-Gómez D., Pérez-Rodríguez P. Sustainable Agriculture through Perennial Grains: Wheat, Rice, Maize, and Other Species. A Review. Agric. Ecosyst. Environ. 2022;325:107747. doi: 10.1016/j.agee.2021.107747. DOI

Saad A.M., Elhabbak A.K., Abbas M.H.H., Mohamed I., AbdelRahman M.A.E., Scopa A., Bassouny M.A. Can Deficit Irrigations Be an Optimum Solution for Increasing Water Productivity under Arid Conditions? A Case Study on Wheat Plants. Saudi J. Biol. Sci. 2023;30:103537. doi: 10.1016/j.sjbs.2022.103537. PubMed DOI PMC

Ahmed N., Ehsan A., Danish S., Ali M.A., Fahad S., Dawar K., Taban S., Akça H., Shah A.A., Ansari M.J., et al. Mitigation of Lead (Pb) Toxicity in Rice Cultivated with Either Ground Water or Wastewater by Application of Acidified Carbon. J. Environ. Manag. 2022;307:114521. doi: 10.1016/j.jenvman.2022.114521. PubMed DOI

Zhang C., Xie Z., Wang Q., Tang M., Feng S., Cai H. AquaCrop Modeling to Explore Optimal Irrigation of Winter Wheat for Improving Grain Yield and Water Productivity. Agric. Water Manag. 2022;266:107580. doi: 10.1016/j.agwat.2022.107580. DOI

Burrell A.L., Evans J.P., De Kauwe M.G. Anthropogenic Climate Change Has Driven over 5 Million Km2 of Drylands towards Desertification. Nat. Commun. 2020;11:3853. doi: 10.1038/s41467-020-17710-7. PubMed DOI PMC

Nazim M., Ali M., Shahzad K., Ahmad F., Nawaz F., Amin M., Anjum S., Nasif O., Ali Alharbi S., Fahad S., et al. Kaolin and Jasmonic Acid Improved Cotton Productivity under Water Stress Conditions. Saudi J. Biol. Sci. 2021;28:6606–6614. doi: 10.1016/j.sjbs.2021.07.043. PubMed DOI PMC

Mubeen M., Ahmad A., Hammad H.M., Awais M., Farid H.U., Saleem M., ul Din M.S., Amin A., Ali A., Fahad S., et al. Evaluating the Climate Change Impact on Water Use Efficiency of Cotton-Wheat in Semi-Arid Conditions Using DSSAT Model. J. Water Clim. Chang. 2020;11:1661–1675. doi: 10.2166/wcc.2019.179. DOI

Amjad S.F., Mansoora N., Din I.U., Khalid Iqbal R., Jatoi G.H., Murtaza G., Yaseen S., Naz M., Danish S., Fahad S., et al. Application of Zinc Fertilizer and Mycorrhizal Inoculation on Physio-Biochemical Parameters of Wheat Grown under Water-Stressed Environment. Sustainability. 2021;13:11007. doi: 10.3390/su131911007. DOI

Ault T.R. On the Essentials of Drought in a Changing Climate. Science. 2020;368:256–260. doi: 10.1126/science.aaz5492. PubMed DOI

Trnka M., Feng S., Semenov M.A., Olesen J.E., Kersebaum K.C., Rötter R.P., Semerádová D., Klem K., Huang W., Ruiz-Ramos M., et al. Mitigation Efforts Will Not Fully Alleviate the Increase in Water Scarcity Occurrence Probability in Wheat-Producing Areas. Sci. Adv. 2019;5:eaau2406. doi: 10.1126/sciadv.aau2406. PubMed DOI PMC

Lotfi R., Abbasi A., Kalaji H.M., Eskandari I., Sedghieh V., Khorsandi H., Sadeghian N., Yadav S., Rastogi A. The Role of Potassium on Drought Resistance of Winter Wheat Cultivars under Cold Dryland Conditions: Probed by Chlorophyll a Fluorescence. Plant Physiol. Biochem. 2022;182:45–54. doi: 10.1016/j.plaphy.2022.04.010. PubMed DOI

Dou Y., Zhao H., Yang H., Wang T., Liu G., Wang Z., Malhi S. The First Factor Affecting Dryland Winter Wheat Grain Yield under Mulching Measures: Spike Number. J. Integr. Agric. 2023 doi: 10.1016/j.jia.2023.05.034. DOI

Luo Y., van Veelen H.P.J., Chen S., Sechi V., ter Heijne A., Veeken A., Buisman C.J.N., Bezemer T.M. Effects of Sterilization and Maturity of Compost on Soil Bacterial and Fungal Communities and Wheat Growth. Geoderma. 2022;409:115598. doi: 10.1016/j.geoderma.2021.115598. DOI

Xu Y., Ma Y., Cayuela M.L., Sánchez-Monedero M.A., Wang Q. Compost Biochemical Quality Mediates Nitrogen Leaching Loss in a Greenhouse Soil under Vegetable Cultivation. Geoderma. 2020;358:113984. doi: 10.1016/j.geoderma.2019.113984. DOI

Cheng Y., Wan W. Strong Linkage between Nutrient-Cycling Functional Gene Diversity and Ecosystem Multifunctionality during Winter Composting with Pig Manure and Fallen Leaves. Sci. Total Environ. 2023;867:161529. doi: 10.1016/j.scitotenv.2023.161529. PubMed DOI

Calderón F.J., Vigil M.F., Benjamin J. Compost Input Effect on Dryland Wheat and Forage Yields and Soil Quality. Pedosphere. 2018;28:451–462. doi: 10.1016/S1002-0160(17)60368-0. DOI

Kelly C., Byrne P.F., Schipanski M.E., Schneekloth J., Calderón F., Fonte S.J. Soil Management Legacy Interacts with Wheat Genotype to Determine Access to Organic N in a Dryland System. Agric. Ecosyst. Environ. 2023;345:108336. doi: 10.1016/j.agee.2022.108336. DOI

Atoloye I.A., Jacobson A.R., Creech J.E., Reeve J.R. Soil Organic Carbon Pools and Soil Quality Indicators 3 and 24 Years after a One-Time Compost Application in Organic Dryland Wheat Systems. Soil Tillage Res. 2022;224:105503. doi: 10.1016/j.still.2022.105503. DOI

Hoang T.N., Konvalina P., Kopecký M., Ghorbani M., Amirahmadi E., Bernas J., Ali S., Nguyen T.G., Murindangabo Y.T., Tran D.K., et al. Assessing Grain Yield and Achieving Enhanced Quality in Organic Farming: Efficiency of Winter Wheat Mixtures System. Agriculture. 2023;13:937. doi: 10.3390/agriculture13050937. DOI

He G., Cui Z., Ying H., Zheng H., Wang Z., Zhang F. Managing the Trade-Offs among Yield Increase, Water Resources Inputs and Greenhouse Gas Emissions in Irrigated Wheat Production Systems. J. Clean. Prod. 2017;164:567–574. doi: 10.1016/j.jclepro.2017.06.085. DOI

Galán-Martín Á., Vaskan P., Antón A., Esteller L.J., Guillén-Gosálbez G. Multi-Objective Optimization of Rainfed and Irrigated Agricultural Areas Considering Production and Environmental Criteria: A Case Study of Wheat Production in Spain. J. Clean. Prod. 2017;140:816–830. doi: 10.1016/j.jclepro.2016.06.099. DOI

Xue J.-F., Yuan Y.-Q., Zhang H.-L., Ren A.-X., Lin W., Sun M., Gao Z.-Q., Sun D.-S. Carbon Footprint of Dryland Winter Wheat under Film Mulching during Summer-Fallow Season and Sowing Method on the Loess Plateau. Ecol. Indic. 2018;95:12–20. doi: 10.1016/j.ecolind.2018.07.024. DOI

Zhang Y., Wang S., Wang H., Wang R., Wang X., Li J. Crop Yield and Soil Properties of Dryland Winter Wheat-Spring Maize Rotation in Response to 10-Year Fertilization and Conservation Tillage Practices on the Loess Plateau. Field Crops Res. 2018;225:170–179. doi: 10.1016/j.fcr.2018.07.003. DOI

Brempong M.B., Norton U., Norton J.B. Compost and Soil Moisture Effects on Seasonal Carbon and Nitrogen Dynamics, Greenhouse Gas Fluxes and Global Warming Potential of Semi-Arid Soils. Int. J. Recycl. Org. Waste Agric. 2019;8:367–376. doi: 10.1007/s40093-019-00309-4. DOI

Bezabeh M.W., Haile M., Sogn T.A., Eich-Greatorex S. Wheat (Triticum aestivum) Production and Grain Quality Resulting from Compost Application and Rotation with Faba Bean. J. Agric. Food Res. 2022;10:100425. doi: 10.1016/j.jafr.2022.100425. DOI

Gryta A., Frąc M., Oszust K. Genetic and Metabolic Diversity of Soil Microbiome in Response to Exogenous Organic Matter Amendments. Agronomy. 2020;10:546. doi: 10.3390/agronomy10040546. DOI

Jiang Z., Zheng H., Xing B. Environmental Life Cycle Assessment of Wheat Production Using Chemical Fertilizer, Manure Compost, and Biochar-Amended Manure Compost Strategies. Sci. Total Environ. 2021;760:143342. doi: 10.1016/j.scitotenv.2020.143342. PubMed DOI

Qiao Y., Tie J., Wang X., Wei B., Zhang W., Liu Z., Zhang G., Lyu J., Liao W., Hu L., et al. Comprehensive Evaluation on Effect of Planting and Breeding Waste Composts on the Yield, Nutrient Utilization, and Soil Environment of Baby Cabbage. J. Environ. Manag. 2023;341:117941. doi: 10.1016/j.jenvman.2023.117941. PubMed DOI

Sun R., Fu M., Ma L., Zhou Y., Li Q. Iron Reduction in Composting Environment Synergized with Quinone Redox Cycling Drives Humification and Free Radical Production from Humic Substances. Bioresour. Technol. 2023;384:129341. doi: 10.1016/j.biortech.2023.129341. PubMed DOI

Pajura R. Composting Municipal Solid Waste and Animal Manure in Response to the Current Fertilizer Crisis—A Recent Review. Sci. Total Environ. 2024;912:169221. doi: 10.1016/j.scitotenv.2023.169221. PubMed DOI

Dhankhar N., Kumar J. Impact of Increasing Pesticides and Fertilizers on Human Health: A Review. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.03.766. DOI

Yang Q., Ma J., Yang F., Zheng H., Lu Z., Qiao F., Zhang K., Gong H., Men X., Li J., et al. The Hidden Indirect Environmental Effect Undercuts the Contribution of Crop Nitrogen Fertilizer Application to the Net Ecosystem Economic Benefit. J. Clean. Prod. 2023;426:139204. doi: 10.1016/j.jclepro.2023.139204. DOI

Suciu N.A., De Vivo R., Rizzati N., Capri E. Cd Content in Phosphate Fertilizer: Which Potential Risk for the Environment and Human Health? Curr. Opin. Environ. Sci. Health. 2022;30:100392. doi: 10.1016/j.coesh.2022.100392. DOI

Mukosha C.E., Moudrý J., Lacko-Bartošová M., Lacko-Bartošová L., Eze F.O., Neugschwandtner R.W., Amirahmadi E., Lehejček J., Bernas J. The Effect of Cropping Systems on Environmental Impact Associated with Winter Wheat Production—An LCA “Cradle to Farm Gate” Approach. Agriculture. 2023;13:2068. doi: 10.3390/agriculture13112068. DOI

Lee J., Choi S., Lee Y., Kim S.Y. Impact of Manure Compost Amendments on NH3 Volatilization in Rice Paddy Ecosystems during Cultivation. Environ. Pollut. 2021;288:117726. doi: 10.1016/j.envpol.2021.117726. PubMed DOI

Yang W., Pudasainee D., Gupta R., Li W., Wang B., Sun L. An Overview of Inorganic Particulate Matter Emission from Coal/Biomass/MSW Combustion: Sampling and Measurement, Formation, Distribution, Inorganic Composition and Influencing Factors. Fuel Process. Technol. 2021;213:106657. doi: 10.1016/j.fuproc.2020.106657. DOI

Magalhaes D., Kazanc F. Influence of Biomass Thermal Pre-Treatment on the Particulate Matter Formation during Pulverized Co-Combustion with Lignite Coal. Fuel. 2022;308:122027. doi: 10.1016/j.fuel.2021.122027. DOI

Cotrufo M.F., Haddix M.L., Kroeger M.E., Stewart C.E. The Role of Plant Input Physical-Chemical Properties, and Microbial and Soil Chemical Diversity on the Formation of Particulate and Mineral-Associated Organic Matter. Soil Biol. Biochem. 2022;168:108648. doi: 10.1016/j.soilbio.2022.108648. DOI

Dueñas-Moreno J., Vázquez-Tapia I., Mora A., Cervantes-Avilés P., Mahlknecht J., Capparelli M.V., Kumar M., Wang C. Occurrence, Ecological and Health Risk Assessment of Phthalates in a Polluted Urban River Used for Agricultural Land Irrigation in Central Mexico. Environ. Res. 2024;240:117454. doi: 10.1016/j.envres.2023.117454. PubMed DOI

Chen D., Yang S., Jiang Z., Wang Z., Wang Z., Tian H. Spatial Distribution, Ecological Risk and Health Risk Assessment of Heavy Metals in Agricultural Soil from Ankang Basin, Shaanxi Province. Heliyon. 2023;9:e22580. doi: 10.1016/j.heliyon.2023.e22580. PubMed DOI PMC

Ahmed R.S., Abuarab M.E., Ibrahim M.M., Baioumy M., Mokhtar A. Assessment of Environmental and Toxicity Impacts and Potential Health Hazards of Heavy Metals Pollution of Agricultural Drainage Adjacent to Industrial Zones in Egypt. Chemosphere. 2023;318:137872. doi: 10.1016/j.chemosphere.2023.137872. PubMed DOI

Temkin A.M., Uche U.I., Evans S., Anderson K.M., Perrone-Gray S., Campbell C., Naidenko O.V. Racial and Social Disparities in Ventura County, California Related to Agricultural Pesticide Applications and Toxicity. Sci. Total Environ. 2022;853:158399. doi: 10.1016/j.scitotenv.2022.158399. PubMed DOI

Sydow M., Chrzanowski Ł., Hauschild M.Z., Owsianiak M. Influence of Metal Speciation on Soil Ecotoxicity Impacts in Life Cycle Assessment. J. Environ. Manag. 2020;266:110611. doi: 10.1016/j.jenvman.2020.110611. PubMed DOI

Wang L., Gao S., Yin X., Yu X., Luan L. Arsenic Accumulation, Distribution and Source Analysis of Rice in a Typical Growing Area in North China. Ecotoxicol. Environ. Saf. 2019;167:429–434. doi: 10.1016/j.ecoenv.2018.10.015. PubMed DOI

Darzi-Naftchali A., Motevali A., Keikha M. The Life Cycle Assessment of Subsurface Drainage Performance under Rice-Canola Cropping System. Agric. Water Manag. 2022;266:107579. doi: 10.1016/j.agwat.2022.107579. DOI

Biermann G., Geist J. Life Cycle Assessment of Common Carp (Cyprinus carpio L.)—A Comparison of the Environmental Impacts of Conventional and Organic Carp Aquaculture in Germany. Aquaculture. 2019;501:404–415. doi: 10.1016/j.aquaculture.2018.10.019. DOI

Revell L.E., Bodeker G.E., Huck P.E., Williamson B.E., Rozanov E. The sensitivity of stratospheric ozone changes through the 21st century to N2O and CH4. Atmos. Chem. Phys. 2012;12:11309–11317. doi: 10.5194/acp-12-11309-2012. DOI

Le Pera A., Sellaro M., Bencivenni E. Composting Food Waste or Digestate? Characteristics, Statistical and Life Cycle Assessment Study Based on an Italian Composting Plant. J. Clean. Prod. 2022;350:131552. doi: 10.1016/j.jclepro.2022.131552. DOI

Zheng S., Chen B., Qiu X., Chen M., Ma Z., Yu X. Distribution and Risk Assessment of 82 Pesticides in Jiulong River and Estuary in South China. Chemosphere. 2016;144:1177–1192. doi: 10.1016/j.chemosphere.2015.09.050. PubMed DOI

Wang J., Azam W. Natural Resource Scarcity, Fossil Fuel Energy Consumption, and Total Greenhouse Gas Emissions in Top Emitting Countries. Geosci. Front. 2024;15:101757. doi: 10.1016/j.gsf.2023.101757. DOI

Zappe A.L., Fernandes de Oliveira P., Boettcher R., Rodriguez A.L., Machado Ê.L., Mantey dos Santos P.A., Rodriguez Lopez D.A., Amador de Matos M.A. Human Health Risk and Potential Environmental Damage of Organic and Conventional Nicotiana Tobaccum Production. Environ. Pollut. 2020;266:114820. doi: 10.1016/j.envpol.2020.114820. PubMed DOI

Houshyar E., Wu X.F., Chen G.Q. Sustainability of Wheat and Maize Production in the Warm Climate of Southwestern Iran: An Emergy Analysis. J. Clean. Prod. 2018;172:2246–2255. doi: 10.1016/j.jclepro.2017.11.187. DOI

Schmidt M. Scarcity and Environmental Impact of Mineral Resources—An Old and Never-Ending Discussion. Resources. 2018;8:2. doi: 10.3390/resources8010002. DOI

Hassan S.T., Xia E., Khan N.H., Shah S.M.A. Economic Growth, Natural Resources, and Ecological Footprints: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2019;26:2929–2938. doi: 10.1007/s11356-018-3803-3. PubMed DOI

Ding Z., Kheir A.M.S., Ali M.G.M., Ali O.A.M., Abdelaal A.I.N., Lin X., Zhou Z., Wang B., Liu B., He Z. The Integrated Effect of Salinity, Organic Amendments, Phosphorus Fertilizers, and Deficit Irrigation on Soil Properties, Phosphorus Fractionation and Wheat Productivity. Sci. Rep. 2020;10:2736. doi: 10.1038/s41598-020-59650-8. PubMed DOI PMC

Tavali I.E. Short-Term Effect of Compost Amendment on the Fertility of Calcareous Soil and Basil Growth. Commun. Soil Sci. Plant Anal. 2021;52:172–182. doi: 10.1080/00103624.2020.1854292. DOI

Cooper A., DeMarco J. Composted Biosolids Amendments for Enhanced Soil Organic Carbon and Water Storage in Perennial Pastures in Colorado. Agric. Ecosyst. Environ. 2023;347:108401. doi: 10.1016/j.agee.2023.108401. DOI

Epelde L., Jauregi L., Urra J., Ibarretxe L., Romo J., Goikoetxea I., Garbisu C. Characterization of Composted Organic Amendments for Agricultural Use. Front. Sustain. Food Syst. 2018;2:44. doi: 10.3389/fsufs.2018.00044. DOI

Agbede T.M. Tillage and Fertilizer Effects on Some Soil Properties, Leaf Nutrient Concentrations, Growth and Sweet Potato Yield on an Alfisol in Southwestern Nigeria. Soil Tillage Res. 2010;110:25–32. doi: 10.1016/j.still.2010.06.003. DOI

Zhang J., Li Z., Zhou X., Ding W., Wang X., Zhao M., Li H., Zou G., Chen Y. Long-Term Application of Organic Compost Is the Primary Contributor to Microplastic Pollution of Soils in a Wheat–Maize Rotation. Sci. Total Environ. 2023;866:161123. doi: 10.1016/j.scitotenv.2022.161123. PubMed DOI

Oginah S.A., Posthuma L., Maltby L., Hauschild M., Fantke P. Linking Freshwater Ecotoxicity to Damage on Ecosystem Services in Life Cycle Assessment. Environ. Int. 2023;171:107705. doi: 10.1016/j.envint.2022.107705. PubMed DOI PMC

Amirahmadi E., Moudrý J., Konvalina P., Hörtenhuber S.J., Ghorbani M., Neugschwandtner R.W., Jiang Z., Krexner T., Kopecký M. Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach. Sustainability. 2022;14:15870. doi: 10.3390/su142315870. DOI

Sharma A., Lee B.-S. Toxicity Test Profile for Deep Eutectic Solvents: A Detailed Review and Future Prospects. Chemosphere. 2024;350:141097. doi: 10.1016/j.chemosphere.2023.141097. PubMed DOI

Fan Y., Luo Z., Hao X., Li S., Kang S. Potential Pathways to Reduce Environmental Impact in a Greenhouse Tomato Production: Life Cycle Assessment for Different Irrigation and Fertilization Treatments. Sci. Hortic. 2022;305:111411. doi: 10.1016/j.scienta.2022.111411. DOI

Luo D., Wang L., Nan H., Cao Y., Wang H., Kumar T.V., Wang C. Phosphorus Adsorption by Functionalized Biochar: A Review. Environ. Chem. Lett. 2023;21:497–524. doi: 10.1007/s10311-022-01519-5. DOI

Persson L., Carney Almroth B.M., Collins C.D., Cornell S., de Wit C.A., Diamond M.L., Fantke P., Hassellöv M., MacLeod M., Ryberg M.W., et al. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environ. Sci. Technol. 2022;56:1510–1521. doi: 10.1021/acs.est.1c04158. PubMed DOI PMC

Kończak M., Huber M. Application of the Engineered Sewage Sludge-Derived Biochar to Minimize Water Eutrophication by Removal of Ammonium and Phosphate Ions from Water. J. Clean. Prod. 2022;331:129994. doi: 10.1016/j.jclepro.2021.129994. DOI

Strokal M., Kahil T., Wada Y., Albiac J., Bai Z., Ermolieva T., Langan S., Ma L., Oenema O., Wagner F., et al. Cost-Effective Management of Coastal Eutrophication: A Case Study for the Yangtze River Basin. Resour. Conserv. Recycl. 2020;154:104635. doi: 10.1016/j.resconrec.2019.104635. DOI

Singh A., Rana M.S., Tiwari H., Kumar M., Saxena S., Anand V., Prajapati S.K. Anaerobic Digestion as a Tool to Manage Eutrophication and Associated Greenhouse Gas Emission. Sci. Total Environ. 2023;861:160722. doi: 10.1016/j.scitotenv.2022.160722. PubMed DOI

Prechsl U.E., Wittwer R., van der Heijden M.G.A., Lüscher G., Jeanneret P., Nemecek T. Assessing the Environmental Impacts of Cropping Systems and Cover Crops: Life Cycle Assessment of FAST, a Long-Term Arable Farming Field Experiment. Agric. Syst. 2017;157:39–50. doi: 10.1016/j.agsy.2017.06.011. DOI

Viveros Santos I., Levasseur A., Bulle C., Deschênes L., Boulay A.-M. Modelling the Influence of Climate Change on Characterization Factors for Copper Terrestrial Ecotoxicity. J. Clean. Prod. 2023;414:137601. doi: 10.1016/j.jclepro.2023.137601. DOI

Medel-Jiménez F., Krexner T., Gronauer A., Kral I. Life Cycle Assessment of Four Different Precision Agriculture Technologies and Comparison with a Conventional Scheme. J. Clean. Prod. 2024;434:140198. doi: 10.1016/j.jclepro.2023.140198. DOI

Yoshida H., Nielsen M.P., Scheutz C., Jensen L.S., Bruun S., Christensen T.H. Long-Term Emission Factors for Land Application of Treated Organic Municipal Waste. Environ. Model. Assess. 2016;21:111–124. doi: 10.1007/s10666-015-9471-5. DOI

Krzyżaniak M., Stolarski M.J., Warmiński K. Life Cycle Assessment of Virginia Mallow Production with Different Fertilisation Options. J. Clean. Prod. 2018;177:824–836. doi: 10.1016/j.jclepro.2017.12.275. DOI

Wang C., Zhao J., Feng Y., Shang M., Bo X., Gao Z., Chen F., Chu Q. Optimizing Tillage Method and Irrigation Schedule for Greenhouse Gas Mitigation, Yield Improvement, and Water Conservation in Wheat–Maize Cropping Systems. Agric. Water Manag. 2021;248:106762. doi: 10.1016/j.agwat.2021.106762. DOI

Zornoza R., Acosta J.A., Gabarrón M., Gómez-Garrido M., Sánchez-Navarro V., Terrero A., Martínez-Martínez S., Faz Á., Pérez-Pastor A. Greenhouse gas emissions and soil organic matter dynamics in woody crop orchards with different irrigation regimes. Sci. Total Environ. 2018;644:1429–1438. PubMed

Hokazono S., Hayashi K. Life Cycle Assessment of Organic Paddy Rotation Systems Using Land- and Product-Based Indicators: A Case Study in Japan. Int. J. Life Cycle Assess. 2015;20:1061–1075. doi: 10.1007/s11367-015-0906-7. DOI

Sung-inthara T., Juntahum S., Senawong K., Katekaew S., Laloon K. Pelletization of Soil Amendment: Optimizing the Production and Quality of Soil Amendment Pellets from Compost with Water and Biochar Mixtures and Their Impact on Soil Properties. Environ. Technol. Innov. 2024;33:103505. doi: 10.1016/j.eti.2023.103505. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...