Selenium enriched bifidobacteria and lactobacilli as potential dietary supplements
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
PubMed
38532224
DOI
10.1007/s11274-024-03960-w
PII: 10.1007/s11274-024-03960-w
Knihovny.cz E-zdroje
- Klíčová slova
- Bioaccumulation, Cytotoxicity, Functional foods, Nanoparticles, Selenium,
- MeSH
- antioxidancia MeSH
- Caco-2 buňky MeSH
- Lactobacillus metabolismus MeSH
- lidé MeSH
- potravní doplňky MeSH
- selen * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- selen * MeSH
In this study, we tested the ability of lactobacilli and bifidobacteria strains to accumulate and biotransform sodium selenite into various selenium species, including selenium nanoparticles (SeNPs). Selenium tolerance and cytotoxicity of selenized strains towards human adenocarcinoma Caco-2 and HT29 cells were determined for all tested strains. Furthermore, the influence of selenium enrichment on the antioxidant activity of selenized strains and hydrophobicity of the bacterial cell surfaces were evaluated. Both hydrophobicity and antioxidant activity increased significantly in the selenized L. paracasei strain and decreased significantly in the selenized L. helveticus strain. The concentrations of 5 and 10 mg/L Na2SeO3 in the growth media were safer for Caco-2 and HT29 cell growth than higher concentrations. At higher concentrations (30, 50, and 100 mg/L), the cell viability was reduced. All the tested strains showed differences in antioxidant potential and hydrophobicity after selenium enrichment. In addition to selenocystine and selenomethionine, the tested bacterial strains produced significant amounts of SeNPs. Our results show that the tested bacterial strains can accumulate and biotransform inorganic selenium, which allows them to become a potential source of selenium.
Zobrazit více v PubMed
Alzate A, Cañas B, Pérez-Munguía S, Hernández-Mendoza H, Pérez-Conde C, Gutiérrez AM, Cámara C (2007) Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS. J Agric Food Chem 55:9776–9783. https://doi.org/10.1021/jf071596d DOI
Alzate A, Pérez-Conde MC, Gutiérrez AM, Cámara C (2010) Selenium-enriched fermented milk: a suitable dairy product to improve selenium intake in humans. Int Dairy J 20:761–769. https://doi.org/10.1016/j.idairyj.2010.05.007 DOI
Berne C, Ellison CK, Ducret A, Brun YV (2018) Bacterial adhesion at the single-cell level. Nat Rev Microbiol 16:616–627. https://doi.org/10.1038/s41579-018-0057-5 DOI
Galano E, Mangiapane E, Bianga J, Palmese A, Pessione E, Szpunar J, Lobinski R, Amoresano A (2013) Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol Cell Proteom 12:2196–2204. https://doi.org/10.1074/mcp.M113.027607 DOI
García-Cayuela T, Korany AM, Bustos I, Gómez de Cadiñanos P, Requena L, Peláez T, Martínez-Cuesta C MC (2014) Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 57:44–50. https://doi.org/10.1016/j.foodres.2014.01.010 DOI
González-Olivares LG, Contreras-Lopéz E, Flores-Aguilar JF, Rodríguez-Serrano G, Castañeda-Ovando A, Jaimez-Ordaz J, Añorve-Morga J, Cruz-Guerrero AE (2016) Inorganic selenium uptake by Lactobacillus ssp. Rev Mex Ingeniería Quim 15:33–38
Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of Nano-Se in vitro. Free Radic Biol Med 35:805–813. https://doi.org/10.1016/S0891-5849(03)00428-3 DOI
Hyrslova I, Krausova G, Smolova J, Stankova B, Branyik T, Malinska H, Huttl M, Kana A, Doskocil I, Curda L (2021) Prebiotic and immunomodulatory properties of the microalga Chlorella vulgaris and its synergistic triglyceride-lowering effect with bifidobacteria. Fermentation 7:125. https://doi.org/10.3390/fermentation7030125 DOI
Hyrslova I, Kana A, Kantorova V, Krausova G, Mrvikova I, Doskocil I (2022) Selenium accumulation and biotransformation in Streptococcus, Lactococcus, and Enterococcus strains. J Funct Foods 92:105056. https://doi.org/10.1016/j.jff.2022.105056 DOI
Jin W, Yoon C, Johnston TV, Ku S, Ji GE (2018) Production of selenomethionine-enriched Bifidobacterium bifidum BGN4 via sodium selenite biocatalysis. Molecules 23:2860. https://doi.org/10.3390/molecules23112860 DOI
Johnson CC, Fordyce FM, Rayman MP (2010) Symposium on ‘Geographical and geological influences on nutrition’: Factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc Nutr Soc Symposium on ‘Geographical and geological influences on nutrition’ Factors controlling the distribution of selenium in the environment and their impact on health and nutrition: Conference on ‘Over- and undernutrition: challenges and approaches.’ 69:119–132. https://doi.org/10.1017/S0029665109991807
Kantorová V, Kaňa A, Krausová G, Hyršlová I, Mestek O (2022) Effect of protease XXIII on selenium species interconversion during their extraction from biological samples. J Food Compos Anal 105:104260. https://doi.org/10.1016/j.jfca.2021.104260 DOI
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812. https://doi.org/10.1016/j.biopha.2018.12.146 DOI
Kieliszek M (2019) Selenium–fascinating microelement, properties and sources in food. Molecules 24:1298. https://doi.org/10.3390/molecules24071298 DOI
Kieliszek M, Błażejak S, Gientka I, Bzducha-Wróbel A (2015) Accumulation and metabolism of selenium by yeast cells. Appl Microbiol Biotechnol 99:5373–5382. https://doi.org/10.1007/s00253-015-6650-x DOI
Krausova G, Kana A, Hyrslova I, Mrvikova I, Kavkova M (2020) Development of selenized lactic acid bacteria and their selenium bioaccummulation capacity. Fermentation 6:91. https://doi.org/10.3390/fermentation6030091 DOI
Krausova G, Kana A, Vecka M, Hyrslova I, Stankova B, Kantorova V, Mrvikova I, Huttl M, Malinska H (2021) In vivo bioavailability of selenium in selenium-enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS rats. Antioxid (Basel) 10:463. https://doi.org/10.3390/antiox10030463 DOI
Kumar A, Prasad KS (2021) Role of nano-selenium in health and environment. J Biotechnol 325:152–163. https://doi.org/10.1016/j.jbiotec.2020.11.004 DOI
Kumar GS, Kulkarni A, Khurana A, Kaur J, Tikoo K (2014) Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy. Chem Biol Interact 223:125–133. https://doi.org/10.1016/j.cbi.2014.09.017 DOI
Kurek E, Ruszczyńska A, Wojciechowski M, Łuciuk A, Michalska-Kacymirow M, Motyl I, Bulska E (2016) Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei. Rocz Panstw Zakl Hig 67:253–262
Loula M, Kaňa A, Mestek O (2019) Non-spectral interferences in single-particle ICP-MS analysis: an underestimated phenomenon. Talanta 202:565–571. https://doi.org/10.1016/j.talanta.2019.04.073 DOI
Martínez FG, Moreno-Martin G, Pescuma M, Madrid-Albarrán Y, Mozzi F (2020) Biotransformation of selenium by lactic acid bacteria: formation of seleno-nanoparticles and seleno-amino acids. Front Bioeng Biotechnol 8:506. https://doi.org/10.3389/fbioe.2020.00506 DOI
Mogna L, Nicola S, Pane M, Lorenzini P, Strozzi G, Mogna G (2012) Selenium and zinc internalized by Lactobacillus buchneri Lb26 (DSM 16341) and Bifidobacterium lactis Bb1 (DSM 17850): Improved bioavailability using a new biological approach. J Clin Gastroenterol 46 Supplement:S41–S45. https://doi.org/10.1097/MCG.0b013e318268861d
Mörschbächer AP, Dullius A, Dullius CH, Bandt CR, Kuhn D, Brietzke DT, Malmann Kuffel FJ, Etgeton HP, Altmayer T, Gonçalves TE, Oreste EQ, Ribeiro AS, de Souza CFV, Hoehne L (2018) Validation of an analytical method for the quantitative determination of selenium in bacterial biomass by ultraviolet-visible spectrophotometry. Food Chem 255:182–186. https://doi.org/10.1016/j.foodchem.2018.02.057 DOI
Mrvčić J, Stanzer D, Šolić E, Stehlik-Tomas V (2012) Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J Microbiol Biotechnol 28:2771–2782. https://doi.org/10.1007/s11274-012-1094-2 DOI
Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141. https://doi.org/10.1016/j.scitotenv.2008.06.024 DOI
Oerlemans MMP, Akkeman R, Ferrari M, Walvoort MTC, de Vos P (2021) Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. J Funct Foods 76:104289. https://doi.org/10.1016/j.jff.2020.104289 DOI
Palomo M, Gutiérrez AM, Pérez-Conde MC, Cámara C, Madrid Y (2014) Se metallomics during lactic fermentation of Se-enriched yogurt. Food Chem 164:371–379. https://doi.org/10.1016/j.foodchem.2014.05.007 DOI
Pescuma M, Gomez-Gomez B, Perez-Corona T, Font G, Madrid Y, Mozzi F (2017) Food prospects of selenium enriched-Lactobacillus acidophilus CRL 636 and Lactobacillus reuteri CRL 1101. J Funct Foods 35:466–473. https://doi.org/10.1016/j.jff.2017.06.009 DOI
Pieniz S, Andreazza R, Mann MB, Camargo F, Brandelli A (2017) Bioaccumulation and distribution of selenium in Enterococcus durans. J Trace Elem Med Biol 40:37–45. https://doi.org/10.1016/j.jtemb.2016.12.003 DOI
Pophaly SD, Poonam, Singh P, Kumar H, Tomar SK, Singh R (2014) Selenium enrichment of lactic acid bacteria and bifidobacteria: a functional food perspective. Trends Food Sci Technol 39:135–145. https://doi.org/10.1016/j.tifs.2014.07.006 DOI
Qiu Y, Zhang J, Ji R, Zhou Y, Shao L, Chen D, Tan J (2019) Preventative effects of selenium-enriched Bifidobacterium longum on irinotecan-induced small intestinal mucositis in mice. Benef Microbes 10:569–577. https://doi.org/10.3920/BM2018.0096 DOI
Saini K, Tomar SK (2017) In vitro evaluation of probiotic potential of Lactobacillus cultures of human origin capable of selenium bioaccumulation. LWT 84:497–504. https://doi.org/10.1016/j.lwt.2017.05.034 DOI
Saini K, Tomar SK, Sangwan V, Bhushan B (2014) Evaluation of lactobacilli from human sources for uptake and accumulation of selenium. Biol Trace Elem Res 160:433–436. https://doi.org/10.1007/s12011-014-0065-x DOI
Shakibaie M, Mohammadi-Khorsand T, Adeli-Sardou M, Jafari M, Amirpour-Rostami S, Ameri A, Forootanfar H (2017) Probiotic and antioxidant properties of selenium-enriched Lactobacillus brevis LSe isolated from an Iranian traditional dairy product. J Trace Elem Med Biol 40:1–9. https://doi.org/10.1016/j.jtemb.2016.11.013 DOI
Száková J, Tremlová J, Pegová K, Najmanová J, Tlustoš P (2015) Soil-to-plant transfer of native selenium for wild vegetation cover at selected locations of the Czech Republic. Environ Monit Assess 187:358. https://doi.org/10.1007/s10661-015-4588-1 DOI
Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100:2555–2566. https://doi.org/10.1007/s00253-016-7300-7 DOI
Xia SK, Chen L, Liang JQ (2007) Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus. J Agric Food Chem 55:2413–2417. https://doi.org/10.1021/jf062946j DOI
Xu Y, Wu S, He J, He C, Wang P, Zeng Q, Yang F (2020) Salt-induced osmotic stress stimulates selenium biotransformation in Lactobacillus rhamnosus ATCC 53103. LWT 131:109763. https://doi.org/10.1016/j.lwt.2020.109763 DOI
Yang J, Yang H (2021) Recent development in Se-enriched yeast, lactic acid bacteria and bifidobacteria. Crit Rev Food Sci Nutr 1–15. https://doi.org/10.1080/10408398.2021.1948818
Yazhiniprabha M, Vaseeharan B (2019) In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater Sci Eng C Mater Biol Appl 103:109763. https://doi.org/10.1016/j.msec.2019.109763 DOI
Yeşilyurt N, Yılmaz B, Ağagündüz D, Capasso R (2021) Involvement of probiotics and postbiotics in the immune system modulation. Biologics 1:89–110. https://doi.org/10.3390/biologics1020006 DOI
Zhang B, Zhou K, Zhang J, Chen Q, Liu G, Shang N, Qin W, Li P, Lin F (2009) Accumulation and species distribution of selenium in Se-enriched bacterial cells of the Bifidobacterium animalis 01. Food Chem 115:727–734. https://doi.org/10.1016/j.foodchem.2008.12.006 DOI
Zheng S, Li X, Zhang Y, Xie Q, Wong YS, Zheng W, Chen T (2012) PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int J Nanomed 7:3939–3949. https://doi.org/10.2147/IJN.S30940 DOI
Zoidis E, Seremelis I, Kontopoulos N, Danezis GP (2018) Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxid (Basel) 7:66. https://doi.org/10.3390/antiox7050066 DOI