In Vitro Cross-Linking MS Reveals SMG1-UPF2-SMG7 Assembly as Molecular Partners within the NMD Surveillance
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2020/36/C/NZ2/00108
National Science Center
PubMed
38542156
PubMed Central
PMC10969982
DOI
10.3390/ijms25063182
PII: ijms25063182
Knihovny.cz E-resources
- Keywords
- NMD, SMG1, SMG7, UPF2, cancer mutations, cross-linking, mRNA, mass spectrometry, protein stability,
- MeSH
- RNA, Messenger genetics MeSH
- Mutation MeSH
- Codon, Nonsense * MeSH
- Nonsense Mediated mRNA Decay * MeSH
- RNA Helicases metabolism MeSH
- Protein Structure, Secondary MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Messenger MeSH
- Codon, Nonsense * MeSH
- RNA Helicases MeSH
mRNAs containing premature stop codons are responsible for various genetic diseases as well as cancers. The truncated proteins synthesized from these aberrant mRNAs are seldom detected due to the nonsense-mediated mRNA decay (NMD) pathway. Such a surveillance mechanism detects most of these aberrant mRNAs and rapidly destroys them from the pool of mRNAs. Here, we implemented chemical cross-linking mass spectrometry (CLMS) techniques to trace novel biology consisting of protein-protein interactions (PPIs) within the NMD machinery. A set of novel complex networks between UPF2 (Regulator of nonsense transcripts 2), SMG1 (Serine/threonine-protein kinase SMG1), and SMG7 from the NMD pathway were identified, among which UPF2 was found as a connection bridge between SMG1 and SMG7. The UPF2 N-terminal formed most interactions with SMG7, and a set of residues emerged from the MIF4G-I, II, and III domains docked with SMG1 or SMG7. SMG1 mediated interactions with initial residues of UPF2, whereas SMG7 formed very few interactions in this region. Modelled structures highlighted that PPIs for UPF2 and SMG1 emerged from the well-defined secondary structures, whereas SMG7 appeared from the connecting loops. Comparing the influence of cancer-derived mutations over different CLMS sites revealed that variants in the PPIs for UPF2 or SMG1 have significant structural stability effects. Our data highlights the protein-protein interface of the SMG1, UPF2, and SMG7 genes that can be used for potential therapeutic approaches. Blocking the NMD pathway could enhance the production of neoantigens or internal cancer vaccines, which could provide a platform to design potential peptide-based vaccines.
See more in PubMed
Nickless A., Bailis J.M., You Z. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell Biosci. 2017;7:26. doi: 10.1186/s13578-017-0153-7. PubMed DOI PMC
Popp M.W., Maquat L.E. Nonsense-mediated mRNA decay and cancer. Curr. Opin. Genet. Dev. 2018;48:44–50. doi: 10.1016/j.gde.2017.10.007. PubMed DOI PMC
Gatfield D. Nonsense-mediated mRNA decay in Drosophila:at the intersection of the yeast and mammalian pathways. EMBO J. 2003;22:3960–3970. doi: 10.1093/emboj/cdg371. PubMed DOI PMC
Bühler M., Steiner S., Mohn F., Paillusson A., Mühlemann O. EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′ UTR length. Nat. Struct. Mol. Biol. 2006;13:462–464. doi: 10.1038/nsmb1081. PubMed DOI
Bobadilla J.L., Macek M., Fine J.P., Farrell P.M. Cystic fibrosis: A worldwide analysis ofCFTR mutations?correlation with incidence data and application to screening. Hum. Mutat. 2002;19:575–606. doi: 10.1002/humu.10041. PubMed DOI
Lykke-Andersen J., Shu M.-D., Steitz J.A. Human upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination Codon. Cell. 2000;103:1121–1131. doi: 10.1016/S0092-8674(00)00214-2. PubMed DOI
Cheng Z., Saito K., Pisarev A.V., Wada M., Pisareva V.P., Pestova T.V., Gajda M., Round A., Kong C., Lim M., et al. Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev. 2009;23:1106–1118. doi: 10.1101/gad.1770109. PubMed DOI PMC
Martin L., Grigoryan A., Wang D., Wang J., Breda L., Rivella S., Cardozo T., Gardner L.B. Identification and characterization of small molecules that inhibit nonsense-mediated RNA decay and suppress nonsense p53 mutations. Cancer Res. 2014;74:3104–3113. doi: 10.1158/0008-5472.CAN-13-2235. PubMed DOI PMC
Boehm V., Gehring N.H. Exon junction complexes: Supervising the gene expression assembly line. Trends Genet. 2016;32:724–735. doi: 10.1016/j.tig.2016.09.003. PubMed DOI
Kashima I., Yamashita A., Izumi N., Kataoka N., Morishita R., Hoshino S., Ohno M., Dreyfuss G., Ohno S. Binding of a novel SMG-1–Upf1–eRF1–eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 2006;20:355–367. doi: 10.1101/gad.1389006. PubMed DOI PMC
Schoenberg D.R., Maquat L.E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 2012;13:246–259. doi: 10.1038/nrg3160. PubMed DOI PMC
Chan W.-K., Bhalla A.D., Le Hir H., Nguyen L.S., Huang L., Gécz J., Wilkinson M.F. A UPF3-mediated regulatory switch that maintains RNA surveillance. Nat. Struct. Mol. Biol. 2009;16:747–753. doi: 10.1038/nsmb.1612. PubMed DOI
Padariya M., Fahraeus R., Hupp T., Kalathiya U. Molecular determinants and specificity of mRNA with alternatively-spliced UPF1 isoforms, influenced by an insertion in the ‘regulatory loop’. Int. J. Mol. Sci. 2021;22:12744. doi: 10.3390/ijms222312744. PubMed DOI PMC
Kalathiya U., Padariya M., Pawlicka K., Verma C.S., Houston D., Hupp T.R., Alfaro J.A. Insights into the effects of cancer associated mutations at the UPF2 and ATP-binding sites of NMD master regulator: UPF1. Int. J. Mol. Sci. 2019;20:5644. doi: 10.3390/ijms20225644. PubMed DOI PMC
Wu C., Roy B., He F., Yan K., Jacobson A. Poly(A)-binding protein regulates the efficiency of translation termination. Cell Rep. 2020;33:108399. doi: 10.1016/j.celrep.2020.108399. PubMed DOI PMC
Lueck J.D., Yoon J.S., Perales-Puchalt A., Mackey A.L., Infield D.T., Behlke M.A., Pope M.R., Weiner D.B., Skach W.R., McCray P.B., Jr., et al. Engineered transfer RNAs for suppression of premature termination codons. Nat. Commun. 2019;10:822. doi: 10.1038/s41467-019-08329-4. PubMed DOI PMC
Bordeira-Carriço R., Pêgo A.P., Santos M., Oliveira C. Cancer syndromes and therapy by stop-codon readthrough. Trends Mol. Med. 2012;18:667–678. doi: 10.1016/j.molmed.2012.09.004. PubMed DOI
Nomakuchi T.T., Rigo F., Aznarez I., Krainer A.R. Antisense oligonucleotide–directed inhibition of nonsense-mediated mRNA decay. Nat. Biotechnol. 2016;34:164–166. doi: 10.1038/nbt.3427. PubMed DOI PMC
Prokhorova I., Altman R.B., Djumagulov M., Shrestha J.P., Urzhumtsev A., Ferguson A., Chang C.-W.T., Yusupov M., Blanchard S.C., Yusupova G. Aminoglycoside interactions and impacts on the eukaryotic ribosome. Proc. Natl. Acad. Sci. USA. 2017;114:E10899–E10908. doi: 10.1073/pnas.1715501114. PubMed DOI PMC
Kalathiya U., Padariya M., Faktor J., Coyaud E., Alfaro J.A., Fahraeus R., Hupp T.R., Goodlett D.R. Interfaces with structure dynamics of the workhorses from cells revealed through cross-linking mass spectrometry (CLMS) Biomolecules. 2021;11:382. doi: 10.3390/biom11030382. PubMed DOI PMC
Singh A., Padariya M., Faktor J., Kote S., Mikac S., Dziadosz A., Lam T.W., Brydon J., Wear M.A., Ball K.L., et al. Identification of novel interferon responsive protein partners of human leukocyte antigen A (HLA-A) using cross-linking mass spectrometry (CLMS) approach. Sci. Rep. 2022;12:19422. doi: 10.1038/s41598-022-21393-z. PubMed DOI PMC
Guerrero C., Tagwerker C., Kaiser P., Huang L. An integrated mass spectrometry-based proteomic approach. Mol. Cell. Proteom. 2006;5:366–378. doi: 10.1074/mcp.M500303-MCP200. PubMed DOI
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Pawlicka K., Kalathiya U., Alfaro J. Nonsense-mediated mRNA decay: Pathologies and the potential for novel therapeutics. Cancers. 2020;12:765. doi: 10.3390/cancers12030765. PubMed DOI PMC
McCann J.J., Fleenor D.E., Chen J., Lai C.-H., Bass T.E., Kastan M.B. Participation of ATM, SMG1, and DDX5 in a DNA damage-induced alternative splicing pathway. Radiat. Res. 2023;199:406–421. doi: 10.1667/RADE-22-00219.1. PubMed DOI PMC
Leeksma A.C., Derks I.A.M., Garrick B., Jongejan A., Colombo M., Bloedjes T., Trowe T., Leisten J.C., Howarth M., Malek M., et al. SMG1, a nonsense-mediated mRNA decay (NMD) regulator, as a candidate therapeutic target in multiple myeloma. Mol. Oncol. 2023;17:284–297. doi: 10.1002/1878-0261.13343. PubMed DOI PMC
Liu Y., Chen P., Qi D., Chen L. Glaucocalyxin A inhibits the malignancies of gastric cancer cells by downregulating MDM2 and RNF6 via MiR-3658 and the SMG1-UPF mRNA decay pathway. Front. Oncol. 2022;12:871169. doi: 10.3389/fonc.2022.871169. PubMed DOI PMC
Nasif S., Colombo M., Uldry A.-C., Schröder M.S., de Brot S., Mühlemann O. Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells. NAR Cancer. 2023;5:zcad048. doi: 10.1093/narcan/zcad048. PubMed DOI PMC
Steiner A.J., Zheng Y., Tang Y. Characterization of a rhabdomyosarcoma reveals a critical role for SMG7 in cancer cell viability and tumor growth. Sci. Rep. 2023;13:10152. doi: 10.1038/s41598-023-36568-5. PubMed DOI PMC
Cowen L.E., Luo H., Tang Y. Characterization of SMG7 14-3-3-like domain reveals phosphoserine binding-independent regulation of p53 and UPF1. Sci. Rep. 2019;9:13097. doi: 10.1038/s41598-019-49229-3. PubMed DOI PMC
Luo H., Cowen L., Yu G., Jiang W., Tang Y. SMG7 is a critical regulator of p53 stability and function in DNA damage stress response. Cell Discov. 2016;2:15042. doi: 10.1038/celldisc.2015.42. PubMed DOI PMC
Berman H.M. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Langer L.M., Gat Y., Bonneau F., Conti E. Structure of substrate-bound SMG1-8-9 kinase complex reveals molecular basis for phosphorylation specificity. Elife. 2020;9:e57127. doi: 10.7554/eLife.57127. PubMed DOI PMC
Jonas S., Weichenrieder O., Izaurralde E. An unusual arrangement of two 14-3-3-like domains in the SMG5–SMG7 heterodimer is required for efficient nonsense-mediated mRNA decay. Genes Dev. 2013;27:211–225. doi: 10.1101/gad.206672.112. PubMed DOI PMC
Clerici M., Mourão A., Gutsche I., Gehring N.H., Hentze M.W., Kulozik A., Kadlec J., Sattler M., Cusack S. Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. EMBO J. 2009;28:2293–2306. doi: 10.1038/emboj.2009.175. PubMed DOI PMC
Kadlec J., Izaurralde E., Cusack S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 2004;11:330–337. doi: 10.1038/nsmb741. PubMed DOI
Behm-Ansmant I., Izaurralde E. Quality control of gene expression: A stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes Dev. 2006;20:391–398. doi: 10.1101/gad.1407606. PubMed DOI
Cerami E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Jacobsen A., Byrne C.J., Heuer M.L., Larsson E., et al. The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404. doi: 10.1158/2159-8290.CD-12-0095. PubMed DOI PMC
Tate J.G., Bamford S., Jubb H.C., Sondka Z., Beare D.M., Bindal N., Boutselakis H., Cole C.G., Creatore C., Dawson E., et al. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–D947. doi: 10.1093/nar/gky1015. PubMed DOI PMC
Lima D.B., Melchior J.T., Morris J., Barbosa V.C., Chamot-Rooke J., Fioramonte M., Souza T.A.C.B., Fischer J.S.G., Gozzo F.C., Carvalho P.C., et al. Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins. Nat. Protoc. 2018;13:431–458. doi: 10.1038/nprot.2017.113. PubMed DOI
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC