Exploring the application of poly(1,2-ethanediol citrate)/polylactide nonwovens in cell culturing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38558787
PubMed Central
PMC10978747
DOI
10.3389/fbioe.2024.1332290
PII: 1332290
Knihovny.cz E-zdroje
- Klíčová slova
- biomaterials, citrate-based polyesters, citric acid, electrospinning, nonwovens,
- Publikační typ
- časopisecké články MeSH
Biomaterials containing citric acid as a building unit show potential for use as blood vessel and skin tissue substitutes. The success in commercializing implants containing a polymer matrix of poly(1,8-octanediol citrate) provides a rationale for exploring polycitrates based on other diols. Changing the aliphatic chain length of the diol allows functional design strategies to control the implant's mechanical properties, degradation profile and surface energy. In the present work, poly(1,2-ethanediol citrate) was synthesized and used as an additive to polylactide in the electrospinning process. It was established that the content of polycitrate greatly influences the nonwovens' properties: an equal mass ratio of polymers resulted in the best morphology. The obtained nonwovens were characterized by surface hydrophilicity, tensile strength, and thermal properties. L929 cell cultures were carried out on their surface. The materials were found to be non-cytotoxic and the degree of porosity was suitable for cell colonization. On the basis of the most important parameters for assessing the condition of cultured cells (cell density and viability, cell metabolic activity and lactate dehydrogenase activity), the potential of PLLA + PECit nonwovens for application in tissue engineering was established.
Faculty of Chemical and Process Engineering Warsaw University of Technology Warsaw Poland
Faculty of Chemistry Warsaw University of Technology Warsaw Poland
Institute of Macromolecular Chemistry Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Arif Z. U., Khalid M. Y., Noroozi R., Ali S., Jalalvand M., Hossain M. (2022). Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applica-tions. Int. J. Biol. Macromol. 218, 930–968. 10.1016/j.ijbiomac.2022.07.140 PubMed DOI
Bandzerewicz A., Godzieba K., Wierzchowski K., Pilarek M., Gadomska-Gajadhur A. (2023). A study of the properties of scaffolds for bone regeneration modified with gel-like coatings of chitosan and folic acid. Gels 9 (10), 773. 10.3390/gels9100773 PubMed DOI PMC
Bandzerewicz A., Wierzchowski K., Mierzejewska J., Denis P., Gołofit T., Szymczyk-Ziółkowska P., et al. (2024). Biological activity of poly(1,3-propanediol citrate) films and nonwovens: mechanical, thermal, antimicrobial and cytotoxicity studies. Macromol. Rapid Commun. 45, 2300452. 10.1002/marc.202300452 PubMed DOI
Caddeo S., Boffito M., Sartori S. (2017). Tissue engineering approaches in the design of healthy and patho-logical in vitro tissue models. Front. Bioeng. Biotechnol. 5 (July), 40. 10.3389/fbioe.2017.00040 PubMed DOI PMC
Chaudhari A. A., Komal V., Radé Baganizi D., Sahu R., Dixit S., Dennis V., et al. (2016). Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int. J. Mol. Sci. 17 (12), 1974. 10.3390/ijms17121974 PubMed DOI PMC
DeStefano V., Khan S., Tabada A. (2020). Applications of PLA in modern medicine. Eng. Regen. 1, 76–87. 10.1016/j.engreg.2020.08.002 PubMed DOI PMC
Gadomska-Gajadhur A., Kruk A., Wierzchowski K., Ruśkowski P., Pilarek M. (2021). Design of experiments-based strategy for development and optimization of polylactide membranes preparation by wet inversion phase method. Polym. Adv. Technol. 32 (8), 3028–3038. 10.1002/pat.5315 DOI
Gerber A., Gogolewski S. (2002). Reconstruction of large segmental defects in the sheep tibia using polylactide membranes. A clinical and radiographic report. Injury 33, 43–57. 10.1016/S0020-1383(02)00132-8 PubMed DOI
Griffith L. G., Gail N. (2002). Tissue engineering--current challenges and expanding opportunities. Science 295 (5557), 1009–1014. 10.1126/science.1069210 PubMed DOI
Guo J., Kim G. B., Shan D., Kim J. P., Hu J., Wang W., et al. (2017). Click Chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials 112, 275–286. 10.1016/j.biomaterials.2016.10.010 PubMed DOI PMC
Guo J., Wang W., Hu J., Xie D., Gerhard E., Nisic M., et al. (2016). Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives. Biomaterials 85, 204–217. 10.1016/j.biomaterials.2016.01.069 PubMed DOI PMC
Gyawali D., Nair P., Zhang Yi, Tran R. T., Zhang C., Samchukov M., et al. (2010). Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery. Biomaterials 31 (34), 9092–9105. 10.1016/j.biomaterials.2010.08.022 PubMed DOI PMC
He H., Matsuda T. (2002). Arterial replacement with compliant hierarchic hybrid vascular graft: biome-chanical adaptation and failure. Tissue Eng. 8 (2), 213–224. 10.1089/107632702753724987 PubMed DOI
Howis J., Bandzerewicz A., Gadomska-Gajadhur A. (2023). Rapid and efficient optimization of poly(1,2-ethanediol citrate) synthesis based on magic squares’ various methods. Gels 9 (1), 30. 10.3390/gels9010030 PubMed DOI PMC
Ikada Y. (2006). Challenges in tissue engineering. J. R. Soc. Interface 3 (10), 589–601. 10.1098/rsif.2006.0124 PubMed DOI PMC
Kalra A., Lowe A. (2016). Mechanical behaviour of skin: a review. J. Material Sci. Eng. 5 (4). 10.4172/2169-0022.1000254 DOI
Kalra A., Lowe. A. (2016). An overview of factors affecting the skins youngs modulus. J. Aging Sci. 4 (2). 10.4172/2329-8847.1000156 DOI
Lumiaho J., Heino A., Tunninen V., Ala-Opas M., Talja M., Välimaa T., et al. (1999). New bio-absorbable polylactide ureteral stent in the treatment of ureteral lesions: an experimental study. J. Endourol-ogy 13 (2), 107–112. 10.1089/end.1999.13.107 PubMed DOI
Meyer M. (2019). Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. OnLine 18, 24. 10.1186/s12938-019-0647-0 PubMed DOI PMC
Montgomery M., Ahadian S., Davenport Huyer L., Lo Rito M., Civitarese R. A., Vanderlaan R. D., et al. (2017). Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 16 (10), 1038–1046. 10.1038/nmat4956 PubMed DOI
Qi F., Liao R., Yang S., Pan H., Qian G., Peng S., et al. (2022). A conductive network enhances nerve cell response. Addit. Manuf. 52, 102694. 10.1016/j.addma.2022.102694 DOI
Qiu H., Yang J., Kodali P., Koh J., GuillermoAmeer A. (2006). A citric acid-based hydroxyapatite com-posite for orthopedic implants. Biomaterials 27 (34), 5845–5854. 10.1016/j.biomaterials.2006.07.042 PubMed DOI
Sharma P., Kumar P., Sharma R., Dhar Bhatt V., Dhot P. S. (2019). Tissue engineering; current status & futuristic scope. J. Med. Life 12 (3), 225–229. 10.25122/jml-2019-0032 PubMed DOI PMC
Singhvi M. S., Zinjarde S. S., Gokhale D. V. (2019). Polylactic acid: synthesis and biomedical applications. J. Appl. Microbiol. 127 (6), 1612–1626. 10.1111/jam.14290 PubMed DOI
Tang J., Guo J., Li Z., Cheng Y., Xie D., Chen J., et al. (2015). A fast degradable citrate-based bone scaffold promotes spinal fusion. J. Mater. Chem. B 3 (27), 5569–5576. 10.1039/C5TB00607D PubMed DOI PMC
Tran R. T., Yang J., Ameer G. A. (2015). Citrate-based biomaterials and their applications in regenerative engineering. Annu. Rev. Mater. Res. 45, 277–310. 10.1146/annurev-matsci-070214-020815 PubMed DOI PMC
Tyler B., Gullotti D., Mangraviti A., Utsuki T., Henry B. (2016). Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. PLA Biodegrad. Polym. 107, 163–175. 10.1016/j.addr.2016.06.018 PubMed DOI
Ulatowski K., Wierzchowski K., Julia F., Sobieszuk P. (2022). Effect of nanobubble presence on murine fibro-blasts and human leukemia cell cultures. Langmuir 38 (28), 8575–8584. 10.1021/acs.langmuir.2c00819 PubMed DOI PMC
Velioglu Z., Pulat D., Demirbakan B., Ozcan B., Bayrak E., Erisken C. (2019). 3D-Printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization. Connect. Tissue Res. 60 (3), 274–282. 10.1080/03008207.2018.1499732 PubMed DOI
Wang M., Xu P., Lei Bo. (2022). Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact. Mater. 19, 511–537. 10.1016/j.bioactmat.2022.04.027 PubMed DOI PMC
Webb A. R., Yang J., Ameer G. A. (2008). A new strategy to characterize the extent of reaction of thermo-set elastomers. J. Polym. Sci. Part A Polym. Chem. 46 (4), 1318–1328. 10.1002/pola.22472 DOI
Xue L., Greisler H. P. (2003). Biomaterials in the development and future of vascular grafts. J. Vasc. Surg. 37 (2), 472–480. 10.1067/mva.2003.88 PubMed DOI
Yang J., Webb A. R., Ameer G. A. (2004). Novel citric acid-based biodegradable elastomers for tissue engineering. Ad-vanced Mater. 16 (6), 511–516. 10.1002/adma.200306264 DOI
Zhao H., Ameer G. A. (2009). Modulating the mechanical properties of poly(diol citrates) via the incorpora-tion of a second type of crosslink network. J. Appl. Polym. Sci. 114 (3), 1464–1470. 10.1002/app.30735 DOI