Performance and robustness analysis of V-Tiger PID controller for automatic voltage regulator
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
38570573
PubMed Central
PMC11371831
DOI
10.1038/s41598-024-58481-1
PII: 10.1038/s41598-024-58481-1
Knihovny.cz E-zdroje
- Klíčová slova
- AVR, Normalized uncertainty, PID controller, Performance degradation curve, Robust stability margin, Virtual time response based iterative gain evaluation and re-design,
- Publikační typ
- časopisecké články MeSH
This paper presents a comprehensive study on the implementation and analysis of PID controllers in an automated voltage regulator (AVR) system. A novel tuning technique, Virtual Time response-based iterative gain evaluation and re-design (V-Tiger), is introduced to iteratively adjust PID gains for optimal control performance. The study begins with the development of a mathematical model for the AVR system and initialization of PID gains using the Pessen Integral Rule. Virtual time-response analysis is then conducted to evaluate system performance, followed by iterative gain adjustments using Particle Swarm Optimization (PSO) within the V-Tiger framework. MATLAB simulations are employed to implement various controllers, including the V-Tiger PID controller, and their performance is compared in terms of transient response, stability, and control signal generation. Robustness analysis is conducted to assess the system's stability under uncertainties, and worst-case gain analysis is performed to quantify robustness. The transient response of the AVR with the proposed PID controller is compared with other heuristic controllers such as the Flower Pollination Algorithm, Teaching-Learning-based Optimization, Pessen Integral Rule, and Zeigler-Nichols methods. By measuring the peak closed-loop gain of the AVR with the controller and adding uncertainty to the AVR's field exciter and amplifier, the robustness of proposed controller is determined. Plotting the performance degradation curves yields robust stability margins and the accompanying maximum uncertainty that the AVR can withstand without compromising its stability or performance. Based on the degradation curves, robust stability margin of the V-Tiger PID controller is estimated at 3.5. The worst-case peak gains are also estimated using the performance degradation curves. Future research directions include exploring novel optimization techniques for further enhancing control performance in various industrial applications.
Applied Science Research Center Applied Science Private University Amman 11937 Jordan
Department of Electrical Engineering Graphic Era Dehradun 248002 India
ENET Centre VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Zobrazit více v PubMed
Li, K., Ji, L., Yang, S., Li, H. & Liao, X. Couple-group consensus of cooperative–competitive heterogeneous multiagent systems: A fully distributed event-triggered and pinning control method. IEEE Trans. Cybern.52, 4907–4915. 10.1109/TCYB.2020.3024551 (2022). 10.1109/TCYB.2020.3024551 PubMed DOI
Shirkhani, M. et al. A review on microgrid decentralized energy/voltage control structures and methods. Energy Rep.10, 368–380. 10.1016/j.egyr.2023.06.022 (2023).10.1016/j.egyr.2023.06.022 DOI
Shen, Y., Liu, D., Liang, W. & Zhang, X. Current reconstruction of three-phase voltage source inverters considering current ripple. IEEE Trans. Transp. Electrif.9, 1416–1427. 10.1109/TTE.2022.3199431 (2023).10.1109/TTE.2022.3199431 DOI
Cao, X. et al. A method of human-like compliant assembly based on variable admittance control for space maintenance. Cyborg. Bionic Syst.10.34133/cbsystems.0046 (2023). 10.34133/cbsystems.0046 PubMed DOI PMC
Agwa, A., Elsayed, S. & Ahmed, M. Design of optimal controllers for automatic voltage regulation using Archimedes optimizer. Intell. Autom. Soft Comput.31, 799–815. 10.32604/iasc.2022.019887 (2022).10.32604/iasc.2022.019887 DOI
Meng, S. et al. Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications. Automatica162, 111512. 10.1016/j.automatica.2024.111512 (2024).10.1016/j.automatica.2024.111512 DOI
Wu, W., Zhu, H., Yu, S. & Shi, J. Stereo matching with fusing adaptive support weights. IEEE Access7, 61960–61974. 10.1109/ACCESS.2019.2916035 (2019).10.1109/ACCESS.2019.2916035 DOI
Hou, M., Zhao, Y. & Ge, X. Optimal scheduling of the plug-in electric vehicles aggregator energy and regulation services based on grid to vehicle. Int. Trans. Electr. Energy Syst.27, e2364. 10.1002/etep.2364 (2017).10.1002/etep.2364 DOI
Ziegler, J. G. & Nichols, N. B. Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control115, 220–222. 10.1115/1.2899060 (1993).10.1115/1.2899060 DOI
Li, B., Guan, T., Dai, L. & Duan, G.-R. Distributionally robust model predictive control with output feedback. IEEE Trans. Autom. Control10.1109/TAC.2023.3321375 (2024).10.1109/TAC.2023.3321375 DOI
Xu, A. et al. A fuzzy intelligent computing approach for energy/voltage control of microgrids. J. Math.2023, 1–11. 10.1155/2023/5289114 (2023).10.1155/2023/5289114 DOI
Bai, X., Xu, M., Li, Q. & Yu, L. Trajectory-battery integrated design and its application to orbital maneuvers with electric pump-fed engines. Adv. Space Res.70, 825–841. 10.1016/j.asr.2022.05.014 (2022).10.1016/j.asr.2022.05.014 DOI
Gopi, P. & Reddy, K. H. Design of PI speed controller for 3-Ph converter fed DC motor drive using symmetrical optimization. J. Appl. Sci. Eng.10.6180/jase.202112_24(6).0003 (2021).10.6180/jase.202112_24(6).0003 DOI
Yang, M., Wang, Y., Xiao, X. & Li, Y. A robust damping control for virtual synchronous generators based on energy reshaping. IEEE Trans. Energy Convers.38, 2146–2159. 10.1109/TEC.2023.3260244 (2023).10.1109/TEC.2023.3260244 DOI
Zhang, X., Pan, W., Scattolini, R., Yu, S. & Xu, X. Robust tube-based model predictive control with Koopman operators. Automatica137, 110114. 10.1016/j.automatica.2021.110114 (2022).10.1016/j.automatica.2021.110114 DOI
Salih, A. M., Humod, A. T. & Hasan, F. A. Optimum design for PID-ANN controller for automatic voltage regulator of synchronous generator. In 2019 4th Sci. Int. Conf. Najaf, 74–79 (IEEE, 2019) 10.1109/SICN47020.2019.9019367.
Song, J., Mingotti, A., Zhang, J., Peretto, L. & Wen, H. Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals. IEEE Trans. Instrum. Meas.71, 1–4. 10.1109/TIM.2022.3220300 (2022).10.1109/TIM.2022.3220300 DOI
Zaidi, A., Basith, I. I. & Khan, V. Intelligent PID controller for automatic voltage regulation. Electr. Electron. Eng.10.5923/j.eee.20221201.01 (2022).10.5923/j.eee.20221201.01 DOI
Zhang, X., Wang, Y., Yuan, X., Shen, Y. & Lu, Z. Adaptive dynamic surface control with disturbance observers for battery/supercapacitor-based hybrid energy sources in electric vehicles. IEEE Trans. Transp. Electrif.9, 5165–5181. 10.1109/TTE.2022.3194034 (2023).10.1109/TTE.2022.3194034 DOI
Zhang, X., Wang, Z. & Lu, Z. Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm. Appl. Energy306, 118018. 10.1016/j.apenergy.2021.118018 (2022).10.1016/j.apenergy.2021.118018 DOI
Ma, K. et al. Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay. IEEE Internet Things J.8, 13343–13354. 10.1109/JIOT.2021.3065966 (2021).10.1109/JIOT.2021.3065966 DOI
Li, X. & Sun, Y. Stock intelligent investment strategy based on support vector machine parameter optimization algorithm. Neural Comput. Appl.32, 1765–1775. 10.1007/s00521-019-04566-2 (2020).10.1007/s00521-019-04566-2 DOI
Zhang, H., Wu, H., Jin, H. & Li, H. High-dynamic and low-cost sensorless control method of high-speed brushless DC motor. IEEE Trans. Ind. Inform.19, 5576–5584. 10.1109/TII.2022.3196358 (2023).10.1109/TII.2022.3196358 DOI
Joseph, S. B., Dada, E. G., Abidemi, A., Oyewola, D. O. & Khammas, B. M. Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon8, e09399. 10.1016/j.heliyon.2022.e09399 (2022). 10.1016/j.heliyon.2022.e09399 PubMed DOI PMC
Xu, B. & Guo, Y. A novel DVL calibration method based on robust invariant extended Kalman filter. IEEE Trans. Veh. Technol.71, 9422–9434. 10.1109/TVT.2022.3182017 (2022).10.1109/TVT.2022.3182017 DOI
Okou, F. A., Akhrif, O. & Dessaint, L.-A. Decentralized multivariable voltage and speed regulator for large-scale power systems with guarantee of stability and transient performance. Int. J. Control78, 1343–1358. 10.1080/00207170500345816 (2005).10.1080/00207170500345816 DOI
Wang, L., Zou, T., Cai, K. & Liu, Y. Rolling bearing fault diagnosis method based on improved residual shrinkage network. J. Braz. Soc. Mech. Sci. Eng.46, 172. 10.1007/s40430-024-04729-w (2024).10.1007/s40430-024-04729-w DOI
Hou, X. et al. A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy105, 108013. 10.1016/j.nanoen.2022.108013 (2023).10.1016/j.nanoen.2022.108013 DOI
Lu, Y., Tan, C., Ge, W., Zhao, Y. & Wang, G. Adaptive disturbance observer-based improved super-twisting sliding mode control for electromagnetic direct-drive pump. Smart Mater. Struct.32, 017001. 10.1088/1361-665X/aca84e (2023).10.1088/1361-665X/aca84e DOI
Yu, J., Dong, X., Li, Q., Lu, J. & Ren, Z. Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems. IEEE Trans. Circuits Syst. I Regul. Pap.69, 2567–2578. 10.1109/TCSI.2022.3151464 (2022).10.1109/TCSI.2022.3151464 DOI
Chatterjee, S. & Mukherjee, V. PID controller for automatic voltage regulator using teaching–learning based optimization technique. Int. J. Electr. Power Energy Syst.77, 418–429. 10.1016/j.ijepes.2015.11.010 (2016).10.1016/j.ijepes.2015.11.010 DOI
Ekinci, S., Hekimoglu, B. & Kaya, S. Tuning of PID controller for AVR system using salp swarm algorithm. In 2018 Int. Conf. Artif. Intell. Data Process, 1–6 (IEEE, 2018)10.1109/IDAP.2018.8620809.
Sambariya, D. K. & Gupta, T. Optimal design of PID controller for an AVR system using flower pollination algorithm. J. Autom. Control10.12691/automation-6-1-1 (2018).10.12691/automation-6-1-1 DOI
Kushwah, B., Batool, S., Gill, A. & Singh, M. ANN and ANFIS techniques for automatic voltage regulation. In 2023 4th Int. Conf. Emerg. Technol., 1–8 (IEEE, 2023) 10.1109/INCET57972.2023.10170217.
Lawal, M. J., Hussein, S. U., Saka, B., Abubakar, S. U. & Attah, I. S. Intelligent fuzzy-based automatic voltage regulator with hybrid optimization learning method. Sci. Afr.19, e01573. 10.1016/j.sciaf.2023.e01573 (2023).10.1016/j.sciaf.2023.e01573 DOI
Gopi, P. et al. Dynamic behavior and stability analysis of automatic voltage regulator with parameter uncertainty. Int. Trans. Electr. Energy Syst.2023, 1–13. 10.1155/2023/6662355 (2023).10.1155/2023/6662355 DOI
Pachauri, N. Water cycle algorithm-based PID controller for AVR. COMPEL Int. J. Comput. Math. Electr. Electron. Eng.39, 551–567. 10.1108/COMPEL-01-2020-0057 (2020).10.1108/COMPEL-01-2020-0057 DOI
Mahdavi, M., Alhelou, H. H., Gopi, P. & Hosseinzadeh, N. Importance of radiality constraints formulation in reconfiguration problems. IEEE Syst. J.10.1109/JSYST.2023.3283970 (2023).10.1109/JSYST.2023.3283970 DOI
Gopi, P. et al. Optimal placement of DG and minimization of power loss using naked mole rat algorithm. In 2023 Int. Conf. Technol. Policy Energy Electr. Power, 35–40 (IEEE, 2023).10.1109/ICT-PEP60152.2023.10351150.
Meddeb, A., Jmii, H., Amor, N. & Chebbi, S. Voltage stability enhancement using FACTS devices. In 2020 4th Int. Conf. Adv. Syst. Emergent Technol., 257–260 (IEEE, 2020)10.1109/IC_ASET49463.2020.9318220.
Shah, S. O., Arshad, A. & Alam, S. Reactive power compensation utilizing FACTS devices. In 2021 Int. Conf. Emerg. Power Technol., 1–6 (IEEE, 2021)10.1109/ICEPT51706.2021.9435455.
Goud, B. S. et al. AGC of multi area multi fuel system with water cycle algorithm based 3DOF-PID controller and integration of PEVs. In 2021 Int. Conf. Data Anal. Bus. Ind., 464–469 (IEEE, 2021) 10.1109/ICDABI53623.2021.9655899.
Naga Sai Kalian, C., Bajaj, M., Kamel, S. & Jurado, F. Load frequency control of multi-area power system with integration of SMES and plug-in electric vehicles. In 2022 4th Glob. Power, Energy Commun. Conf., 349–54(IEEE, 2022)10.1109/GPECOM55404.2022.9815760.
Bajaj, M. & Singh, A. K. An MCDM-based approach for ranking the voltage quality in the distribution power networks. In 2020 IEEE 7th Uttar Pradesh Sect. Int. Conf. Electr. Electron. Comput. Eng., 1–6 (IEEE, 2020) 10.1109/UPCON50219.2020.9376535.
Sahri, Y. et al. Effectiveness analysis of twelve sectors of DTC based on a newly modified switching table implemented on a wind turbine DFIG system under variable wind velocity. Ain Shams Eng. J.14, 102221. 10.1016/j.asej.2023.102221 (2023).10.1016/j.asej.2023.102221 DOI
Sivapriya, A. et al. Real-time hardware-in-loop based open circuit fault diagnosis and fault tolerant control approach for cascaded multilevel inverter using artificial neural network. Front. Energy Res.10.3389/fenrg.2022.1083662 (2023).10.3389/fenrg.2022.1083662 DOI
Gopi, P., Mahdavi, M. & Alhelou, H. H. Robustness and stability analysis of automatic voltage regulator using disk-based stability analysis. IEEE Open Access J. Power Energy10, 689–700. 10.1109/OAJPE.2023.3344750 (2023).10.1109/OAJPE.2023.3344750 DOI
Pachauri, N. et al. A robust fractional-order control scheme for PV-penetrated grid-connected microgrid. Mathematics11, 1283. 10.3390/math11061283 (2023).10.3390/math11061283 DOI
Gopi, P., Srinivasan, S. & Krishnamoorthy, M. Disk margin based robust stability analysis of a DC motor drive. Eng. Sci. Technol. Int. J.32, 101074. 10.1016/j.jestch.2021.10.006 (2022).10.1016/j.jestch.2021.10.006 DOI
Kalyan, C. N. S. et al. Comparative performance assessment of different energy storage devices in combined LFC and AVR analysis of multi-area power system. Energies15, 629. 10.3390/en15020629 (2022).10.3390/en15020629 DOI
Kalyan, C. N. S. et al. Performance enhancement of combined LFC and AVR system with the integration of HVDC line. In 2023 IEEE IAS Glob. Conf. Renew. Energy Hydrog. Technol., 1–6 (IEEE, 2023)10.1109/GlobConHT56829.2023.10087546.
Kalyan, C. N. S. et al. Enhancement in interconnected power system performance with 3DOFPID regulator and plug-in electric vehicles incorporation. In 2023 Int. Conf. Adv. Power, Signal, Inf. Technol., 353–358 (IEEE, 2023) 10.1109/APSIT58554.2023.10201781.
Sai Kalyan, C. N. et al. Fruit fly optimization technique based regulator for LFC of conventional power system with the integration of plugin electric vehicles. In 2023 5th Int. Youth Conf. Radio Electron. Electr. Power Eng., 1–6 (IEEE, 2023) 10.1109/REEPE57272.2023.10086898.
Sai Kalyan, C. N. et al. Revealing the significance of time delays on the performance of diverse source power systems under fruit fly optimization tuned 3DOFTID regulator. In 2023 5th Int. Youth Conf. Radio Electron. Electr. Power Eng., 1–6 (IEEE, 2023) 10.1109/REEPE57272.2023.10086832.
Wang, W., Liang, J., Liu, M., Ding, L. & Zeng, H. Novel robust stability criteria for lur’e systems with time-varying delay. Mathematics12, 583. 10.3390/math12040583 (2024).10.3390/math12040583 DOI
Feng, J., Wang, W. & Zeng, H.-B. Integral sliding mode control for a class of nonlinear multi-agent systems with multiple time-varying delays. IEEE Access12, 10512–10520. 10.1109/ACCESS.2024.3354030 (2024).10.1109/ACCESS.2024.3354030 DOI
Zhang, X. et al. Secure routing strategy based on attribute-based trust access control in social-aware networks. J. Signal Process Syst.10.1007/s11265-023-01908-1 (2024).10.1007/s11265-023-01908-1 DOI
Mou, J. et al. A machine learning approach for energy-efficient intelligent transportation scheduling problem in a real-world dynamic circumstances. IEEE Trans. Intell. Transp. Syst.24, 15527–15539. 10.1109/TITS.2022.3183215 (2023).10.1109/TITS.2022.3183215 DOI
Song, F., Liu, Y., Shen, D., Li, L. & Tan, J. Learning control for motion coordination in wafer scanners: toward gain adaptation. IEEE Trans. Ind. Electron69, 13428–13438. 10.1109/TIE.2022.3142428 (2022).10.1109/TIE.2022.3142428 DOI
Chen, B., Hu, J., Zhao, Y. & Ghosh, B. K. Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans. Syst. Man Cybern. Syst.52, 6618–6629. 10.1109/TSMC.2022.3148295 (2022).10.1109/TSMC.2022.3148295 DOI
Zhao, L., Qu, S., Xu, H., Wei, Z. & Zhang, C. Energy-efficient trajectory design for secure SWIPT systems assisted by UAV-IRS. Veh. Commun.45, 100725. 10.1016/j.vehcom.2023.100725 (2024).10.1016/j.vehcom.2023.100725 DOI
Gopi, P., Ramesh, M. & Lalitha, M. P. Evaluation of automatic voltage regulator’s pid controller coefficients using python. In 2021 IEEE Madras Sect. Conf., 1–7 (IEEE, 2021) 10.1109/MASCON51689.2021.9563458.
Fei, M., Zhang, Z., Zhao, W., Zhang, P. & Xing, Z. Optimal power distribution control in modular power architecture using hydraulic free piston engines. Appl. Energy358, 122540. 10.1016/j.apenergy.2023.122540 (2024).10.1016/j.apenergy.2023.122540 DOI
Hu, J., Wu, Y., Li, T. & Ghosh, B. K. Consensus control of general linear multiagent systems with antagonistic interactions and communication noises. IEEE Trans. Automat. Control64, 2122–2127. 10.1109/TAC.2018.2872197 (2019).10.1109/TAC.2018.2872197 DOI
Lu, C., Gao, R., Yin, L. & Zhang, B. Human–robot collaborative scheduling in energy-efficient welding shop. IEEE Trans. Ind. Inform.20, 963–971. 10.1109/TII.2023.3271749 (2024).10.1109/TII.2023.3271749 DOI
Li, S., Zhao, X., Liang, W., Hossain, M. T. & Zhang, Z. A Fast and accurate calculation method of line breaking power flow based on Taylor expansion. Front. Energy Res.10.3389/fenrg.2022.943946 (2022).10.3389/fenrg.2022.943946 DOI
Bai, X., He, Y. & Xu, M. Low-thrust reconfiguration strategy and optimization for formation flying using jordan normal form. IEEE Trans. Aerosp. Electron. Syst.57, 3279–3295. 10.1109/TAES.2021.3074204 (2021).10.1109/TAES.2021.3074204 DOI
Zhang, J. et al. Fractional order complementary non-singular terminal sliding mode control of PMSM based on neural network. Int. J. Automot. Technol.10.1007/s12239-024-00015-9 (2024).10.1007/s12239-024-00015-9 DOI
Lu, C., Liu, Q., Zhang, B. & Yin, L. A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop. Expert Syst. Appl.204, 117555. 10.1016/j.eswa.2022.117555 (2022).10.1016/j.eswa.2022.117555 DOI
Kosaka, M., Kosaka, A. & Kosaka, M. Virtual time-response based iterative gain evaluation and redesign. IFAC-PapersOnLine53, 3946–3952. 10.1016/j.ifacol.2020.12.2249 (2020).10.1016/j.ifacol.2020.12.2249 DOI