Abnormal Cerebrospinal Fluid Cytology in Functional Movement Disorders
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38573035
DOI
10.1097/psy.0000000000001307
PII: 00006842-990000000-00211
Knihovny.cz E-zdroje
- MeSH
- biologické markery mozkomíšní mok MeSH
- cytodiagnostika MeSH
- dospělí MeSH
- konverzní poruchy mozkomíšní mok patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- počet leukocytů MeSH
- pohybové poruchy * mozkomíšní mok patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
OBJECTIVE: The role of inflammation and neuroimmune mechanisms, which have been documented in various neuropsychiatric disorders including the seizure subtype of functional neurological disorder, remains unclear in functional movement disorders (FMD). To explore these mechanisms, we analyzed selected inflammatory markers in cerebrospinal fluid (CSF) in patients with FMD. METHODS: We compared CSF markers in 26 patients with clinically established FMD (20 females; mean [SD] age = 43.3 [10.9], disease duration = 3.9 [3], range = 0.1-11 years; mean follow-up after lumbar puncture = 4.3 [2] years, range = 0.5-7 years) and 26 sex- and age-matched clinical controls with noninflammatory nonneurodegenerative neurological disorders, mostly sleep disorders. RESULTS: Sixty-five percent of FMD patients versus 15% of controls showed cytological abnormalities (i.e., increased white blood cells [WBC] count, signs of WBC activation, or both; odds ratio [OR] = 9.85, 95% confidence interval = 2.37-52.00, p < .01, corrected), with a significantly higher frequency of an isolated lymphocytic activation, 35% versus 0% (OR = ∞, 95% confidence interval = 2.53-∞, p < .05, corrected). There were no differences in CSF protein and albumin levels, quotient albumin, IgG index, and oligoclonal bands. CSF abnormalities were not associated with more severe motor symptoms or a higher frequency of depression in FMD. CONCLUSIONS: Our results suggest a possible involvement of immune mechanisms in the pathophysiology of (at least a subtype of) FMD that deserves further investigation.
Zobrazit více v PubMed
Aybek S, Perez DL. Diagnosis and management of functional neurological disorder. BMJ 2022;376:o64.
APA. Diagnostic and Statistical Manual of Mental Disorders . 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.
Drane DL, Fani N, Hallett M, Khalsa SS, Perez DL, Roberts NA. A framework for understanding the pathophysiology of functional neurological disorder. CNS Spectr 2020;1–7.
Forejtova Z, Serranova T, Sieger T, Slovak M, Novakova L, Vechetova G, et al. The complex syndrome of functional neurological disorder. Psychol Med 2023;53:3157–67.
Edwards MJ, Adams RA, Brown H, Parees I, Friston KJ. A Bayesian account of ‘hysteria’. Brain 2012;135:3495–512.
Van den Bergh O, Witthoft M, Petersen S, Brown RJ. Symptoms and the body: taking the inferential leap. Neurosci Biobehav Rev 2017;74:185–203.
Hallett M, Aybek S, Dworetzky BA, McWhirter L, Staab JP, Stone J. Functional neurological disorder: new subtypes and shared mechanisms. Lancet Neurol 2022;21:537–50.
Paredes-Echeverri S, Maggio J, Begue I, Pick S, Nicholson TR, Perez DL. Autonomic, endocrine, and inflammation profiles in functional neurological disorder: a systematic review and meta-analysis. J Neuropsychiatry Clin Neurosci 2022;34:30–43.
Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 2016;16:22–34.
Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 2017;42:254–70.
Muller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci 2015;9:372.
Ludwig L, Pasman JA, Nicholson T, Aybek S, David AS, Tuck S, et al. Stressful life events and maltreatment in conversion (functional neurological) disorder: systematic review and meta-analysis of case-control studies. Lancet Psychiatry 2018;5:307–20.
Sharma AA, Szaflarski JP. Neuroinflammation as a pathophysiological factor in the development and maintenance of functional seizures: a hypothesis. Epilepsy Behav Rep 2021;16:100496.
Mueller C, Sharma AA, Szaflarski JP. Peripheral and central nervous system biomarkers of inflammation in functional seizures: assessment with magnetic resonance spectroscopy. Neuropsychiatr Dis Treat 2023;19:2729–43.
van der Feltz-Cornelis C, Brabyn S, Ratcliff J, Varley D, Allgar V, Gilbody S, et al. Assessment of cytokines, microRNA and patient related outcome measures in conversion disorder/functional neurological disorder (CD/FND): the CANDO clinical feasibility study. Brain Behav Immun Health 2021;13:100228.
Strik H, Nagel I. Cell Count and Staining. In: Deisenhammer F, Sellebjerg F, Teunissen CE, Tumani H, editors. Cerebrospinal Fluid in Clinical Neurology. Cham: Springer International Publishing; 2015:81–100.
Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc Biol 2020;2:H1–18.
Deisenhammer F, Bartos A, Egg R, Gilhus NE, Giovannoni G, Rauer S, et al. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur J Neurol 2006;13:913–22.
Gupta A, Lang AE. Psychogenic movement disorders. Curr Opin Neurol 2009;22:430–6.
Espay AJ, Lang AE. Phenotype-specific diagnosis of functional (psychogenic) movement disorders. Curr Neurol Neurosci Rep 2015;15:32.
Nielsen G, Ricciardi L, Meppelink AM, Holt K, Teodoro T, Edwards M. A simplified version of the Psychogenic Movement Disorders Rating Scale: the Simplified Functional Movement Disorders Rating Scale (S-FMDRS). Mov Disord Clin Pract 2017;4:710–6.
Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry 1961;4:561–71.
Teunissen CE, Tumani H, Bennett JL, Berven FS, Brundin L, Comabella M, et al. Consensus guidelines for CSF and blood biobanking for CNS biomarker studies. Mult Scler Int 2011;2011:246412.
Ostergaard AA, Sydenham TV, Nybo M, Andersen AB. Cerebrospinal fluid pleocytosis level as a diagnostic predictor? A cross-sectional study. BMC Clin Pathol 2017;17:15.
Breiner A, Moher D, Brooks J, Cheng W, Hegen H, Deisenhammer F, et al. Adult CSF total protein upper reference limits should be age-partitioned and significantly higher than 0.45 g/L: a systematic review. J Neurol 2019;266:616–24.
Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther 2021;27:36–47.
Stolp HB, Dziegielewska KM. Review: role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 2009;35:132–46.
Tumani H, Hegen H. CSF albumin: albumin CSF/serum ratio (marker for blood-CSF barrier function). In: Deisenhammer F, Sellebjerg F, Teunissen CE, Tumani H, editors. Cerebrospinal Fluid in Clinical Neurology. Cham: Springer International Publishing; 2015:111–4.
Stangel M, Fredrikson S, Meinl E, Petzold A, Stuve O, Tumani H. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat Rev Neurol 2013;9:267–76.
Sellebjerg F. Immunoglobulins in cerebrospinal fluid. In: Deisenhammer F, Sellebjerg F, Teunissen CE, Tumani H, editors. Cerebrospinal Fluid in Clinical Neurology. Cham: Springer International Publishing; 2015:115–29.
Sadaba MC, Gonzalez Porque P, Masjuan J, Alvarez-Cermeno JC, Bootello A, Villar LM. An ultrasensitive method for the detection of oligoclonal IgG bands. J Immunol Methods 2004;284:141–5.
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17:162–73.
Rahimi J, Woehrer A. Overview of cerebrospinal fluid cytology. Handb Clin Neurol 2017;145:563–71.
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979;6:65–70.
R Core Team. R: A Language and Environment for Statistical Computing . Viena, Austria: R Foundation for statistical Computing; 2020.
Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun 2017;60:1–12.
Hegen H, Zinganell A, Auer M, Deisenhammer F. The clinical significance of single or double bands in cerebrospinal fluid isoelectric focusing. A retrospective study and systematic review. PLoS One 2019;14:e0215410.
Mousten IV, Sorensen NV, Christensen RHB, Benros ME. Cerebrospinal fluid biomarkers in patients with unipolar depression compared with healthy control individuals: a systematic review and meta-analysis. JAMA Psychiatry 2022;79:571–81.
Sorensen NV, Orlovska-Waast S, Jeppesen R, Klein-Petersen AW, Christensen RHB, Benros ME. Neuroinflammatory biomarkers in cerebrospinal fluid from 106 patients with recent-onset depression compared with 106 individually matched healthy control subjects. Biol Psychiatry 2022;92:563–72.
Omori W, Hattori K, Kajitani N, Tsuchioka MO, Boku S, Kunugi H, et al. Increased matrix metalloproteinases in cerebrospinal fluids of patients with major depressive disorder and schizophrenia. Int J Neuropsychopharmacol 2020;23:713–20.
Kleine TO, Albrecht J, Zofel P. Flow cytometry of cerebrospinal fluid (CSF) lymphocytes: alterations of blood/CSF ratios of lymphocyte subsets in inflammation disorders of human central nervous system (CNS). Clin Chem Lab Med 1999;37:231–41.
Monsalve FA, Delgado-López F, Fernández-Tapia B, González DR. Adipose tissue, non-communicable diseases, and physical exercise: an imperfect triangle. Int J Mol Sci 2023;24.
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015;14:388–405.
Petralia MC, Mazzon E, Fagone P, Basile MS, Lenzo V, Quattropani MC, et al. The cytokine network in the pathogenesis of major depressive disorder. Close to translation? Autoimmun Rev 2020;19:102504.
Bazzichi L, Rossi A, Massimetti G, Giannaccini G, Giuliano T, De Feo F, et al. Cytokine patterns in fibromyalgia and their correlation with clinical manifestations. Clin Exp Rheumatol 2007;25:225–30.
Yang T, Yang Y, Wang D, Li C, Qu Y, Guo J, et al. The clinical value of cytokines in chronic fatigue syndrome. J Transl Med 2019;17:213.
Peterson D, Brenu EW, Gottschalk G, Ramos S, Nguyen T, Staines D, et al. Cytokines in the cerebrospinal fluids of patients with chronic fatigue syndrome/myalgic encephalomyelitis. Mediators Inflamm 2015;2015:929720.
Backryd E, Tanum L, Lind AL, Larsson A, Gordh T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J Pain Res 2017;10:515–25.
Natelson BH, Weaver SA, Tseng CL, Ottenweller JE. Spinal fluid abnormalities in patients with chronic fatigue syndrome. Clin Diagn Lab Immunol 2005;12:52–5.
Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun 2019;81:24–40.
Almeida PGC, Nani JV, Oses JP, Brietzke E, Hayashi MAF. Neuroinflammation and glial cell activation in mental disorders. Brain Behav Immun Health 2019;2:100034.
Carvalho GB, Damasio A. Interoception and the origin of feelings: a new synthesis. Bioessays 2021;43:e2000261.
Williams IA, Reuber M, Levita L. Interoception and stress in patients with functional neurological symptom disorder. Cogn Neuropsychiatry 2021;26:75–94.
Sojka P, Diez I, Bares M, Perez DL. Individual differences in interoceptive accuracy and prediction error in motor functional neurological disorders: a DTI study. Hum Brain Mapp 2021;42:1434–45.
Jungilligens J, Paredes-Echeverri S, Popkirov S, Barrett LF, Perez DL. A new science of emotion: implications for functional neurological disorder. Brain 2022;145:2648–63.
Kuzior H, Fiebich BL, Yousif NM, Saliba SW, Ziegler C, Nickel K, et al. Increased IL-8 concentrations in the cerebrospinal fluid of patients with unipolar depression. Compr Psychiatry 2020;102:152196.
Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 2016;21:1696–709.
Espay AJ, Morgante F, Purzner J, Gunraj CA, Lang AE, Chen R. Cortical and spinal abnormalities in psychogenic dystonia. Ann Neurol 2006;59:825–34.
Morgante F, Tinazzi M, Squintani G, Martino D, Defazio G, Romito L, et al. Abnormal tactile temporal discrimination in psychogenic dystonia. Neurology 2011;77:1191–7.
de Souza A, Jacques R, Mohan S. Vaccine-induced functional neurological disorders in the COVID-19 era. Can J Neurol Sci 2023;50:346–50.
Willems LH, Nagy M, Ten Cate H, Spronk HMH, Jacobs LMC, Kranendonk J, et al. ChAdOx1 vaccination, blood coagulation, and inflammation: no effect on coagulation but increased interleukin-6. Res Pract Thromb Haemost 2021;5:e12630.