Utilization of used textiles for solid recovered fuel production
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Excellence initiative - research university (ID8688)
Akademia Górniczo-Hutnicza im. Stanislawa Staszica
PubMed
38592624
DOI
10.1007/s11356-024-33195-z
PII: 10.1007/s11356-024-33195-z
Knihovny.cz E-zdroje
- Klíčová slova
- Alternative fuel, Calorific value, Carbon dioxide emission, Chlorine, Cotton, Mercury, Polyester, Waste management,
- MeSH
- recyklace MeSH
- textilie * MeSH
- Publikační typ
- časopisecké články MeSH
One of the current important issues is the management of used textiles. One method is recycling, but the processes are characterized by a high environmental burden and the products obtained are of lower quality. Used textiles can be successfully used to produce SRF (solid recovered fuels). This type of fuel is standardized by ISO 21640:2021. In the paper, an analysis of used textiles made from fibers of different origins was performed. These were acrylic, cotton, linen, polyester, wool, and viscose. A proximate and ultimate analysis of the investigated samples was performed, including mercury and chlorine content. The alternative fuel produced from used textiles will be characterized by acceptable parameters for consumers: a lower heating value at 20 MJ/kg (class 1-3 SRF), mercury content below 0.9 µg Hg/MJ (class 1 SRF), and a chlorine content below 0.2% (class 1 SRF). However, the very high sulfur content in wool (3.0-3.6%) and the high nitrogen content in acrylic may limit its use for power generation. The use of alternative fuel derived from used textiles may allow 3% of the coal consumed to be substituted in 2030. The reduction in carbon dioxide emissions from the substitution of coal with an alternative fuel derived from used textiles will depend on their composition. For natural and man-made cellulosic fibers, the emission factor can be assumed as for plant biomass, making their use for SRF production preferable. For synthetic fibers, the emission factor was estimated at the level of 102 and 82 gCO2/MJ for polyester and acrylic, respectively.
Zobrazit více v PubMed
BAT-LCP (2017) Commission Implementing Decision (EU) 2017/1442 of 31 July 2017 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for large combustion plantsAny necessary renumbering/reordering will be done during later processing You cannot revert your reference corrections. EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017D1442 . Accessed 6 Apr 2024
Bielak E, Marcinkowska E (2022) Heavy metals in leathers, artificial leathers, and textiles in the context of quality and safety of use. Sci Rep 12:e5061. https://doi.org/10.1038/s41598-022-08911-9 DOI
China CR, Maguta MM, Nyandoro SS, Hilonga A, Kanth SV, Njau KN (2020) Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: a comprehensive review. Chemosphere 254:e126804. https://doi.org/10.1016/j.chemosphere.2020.126804 DOI
Danish A, Ozbakkaloglu T (2023) 2 - Fiber classifications and physical and mechanical properties of different fibers used in alkali-activated composites. In: Çevik A, Niş A (eds) Advanced fiber-reinforced alkali-activated composites. Elsevier, Amsterdam, pp 23–58. https://doi.org/10.1016/B978-0-443-15301-3.00016-6
Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste. EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018L0851 . Accessed 6 Apr 2024
Doyle EK, Preston JWV, McGregor BA, Hynd PI (2021) The science behind the wool industry. The importance and value of wool production from sheep. Anim Front 11(2):15–23. https://doi.org/10.1093/af/vfab005 DOI
Dziok T, Bury M, Bytnar K, Burmistrz P (2021) Possibility of using alternative fuels in Polish power plants in the context of mercury emissions. Waste Manage 126:578–584. https://doi.org/10.1016/j.wasman.2021.03.053 DOI
Dziok T, Bury M, Burmistrz P (2022) Mercury release from municipal solid waste in the thermal treatment process. Fuel 329:e125528. https://doi.org/10.1016/j.fuel.2022.125528 DOI
El-Nagar KE, Shehata AB, Long SE, Kelly ER, Mann JL (2012) Detection of total mercury in cotton matrix. Elixir Appl Chem 44:7287–7291
ESA (2016) International Recommendations for Energy Statistics (IRES), Department of Economic and Social Affairs, Statistics Division, New York. https://seea.un.org/sites/seea.un.org/files/ires_edited2.pdf
Galaska ML, Sqrow LD, Wolf JD, Morgan AB (2019) Flammability characteristics of animal fibers: single breed wools, alpaca/wool, and llama/wool blends. Fibers 7:e3. https://doi.org/10.3390/fib7010003 DOI
Gałko G, Mazur I, Rejdak M, Jagustyn B, Hrabak J, Ouadi H, Jahangiri H, Sajdak M (2023) Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications. Energy 263(Part D):e125920. https://doi.org/10.1016/j.energy.2022.125920 DOI
Gerassimidou S, Velis CA, Williams PT, Komilis D (2020) Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: a review. Waste Manag Res 38(9):942–965. https://doi.org/10.1177/0734242X20941085 DOI
Guo Z, Eriksson M, de la Motte H, Adolfsson E (2021) Circular recycling of polyester textile waste using a sustainable catalyst. J Clean Prod 283:e124579. https://doi.org/10.1016/j.jclepro.2020.124579 DOI
Hosokai S, Matsuoka K, Kuramoto K, Suzuki Y (2016) Modification of Dulong’s formula to estimate heating value of gas, liquid and solid fuels. Fuel Process Technol 152:399–405. https://doi.org/10.1016/j.fuproc.2016.06.040 DOI
IEA (2022) World energy outlook 2022, IEA, Paris. https://www.iea.org/reports/world-energy-outlook-2022 . Accessed 28 April 2023
Kaniowski W, Taler J, Wang X, Kalemba-Rec I, Gajek M, Mlonka-Mędrala A, Nowak-Woźny D, Magdziarz A (2022) Investigation of biomass, RDF and coal ash-related problems: Impact on metallic heat exchanger surfaces of boilers. Fuel 326:e125122. https://doi.org/10.1016/j.fuel.2022.125122 DOI
Ketema A, Worku A (2020) Review on intermolecular forces between dyes used for polyester dyeing and polyester fiber. Hindawi J Chem 2020:e6628404. https://doi.org/10.1155/2020/6628404 DOI
Kijo-Kleczkowska A, Gnatowski A, Tora B, Kogut K, Bytnar K, Krzywanski J, Makowska D (2023) Research on waste combustion in the aspect of mercury emissions. Materials 16:e3213. https://doi.org/10.3390/ma16083213 DOI
Kogut K, Górecki J, Burmistrz P (2021) Opportunities for reducing mercury emissions in the cement industry. J Clean Prod 293:e126053. https://doi.org/10.1016/j.jclepro.2021.126053 DOI
Kwon D, Yi S, Jung S, Kwon EE (2021) Valorization of synthetic textile waste using CO DOI
Lam CHK, Ip AWM, Barford JP, McKay G (2010) Use of incineration MSW ash: a review. Sustainability 2(7):1943–1968. https://doi.org/10.3390/su2071943 DOI
Liu Y, Huang H, Zhu L, Zhang C, Ren F, Liu Z (2020) Could the recycled yarns substitute for the virgin cotton yarns: a comparative LCA. Int J Life Cycle Assess 25:2050–2062. https://doi.org/10.1007/s11367-020-01815-8 DOI
Longo S, Cellura M, Girardi P (2020) Life Cycle Assessment of electricity production from refuse derived fuel: a case study in Italy. Sci Total Environ 738:e139719. https://doi.org/10.1016/j.scitotenv.2020.139719 DOI
Ma W, Wenga T, Frandsen FJ, Yan B, Chen G (2020) The fate of chlorine during MSW incineration: vaporization, transformation, deposition, corrosion and remedies. Prog Energy Combust Sci 76:e100789. https://doi.org/10.1016/j.pecs.2019.100789 DOI
Matoso E, Cadore S (2012) Determination of inorganic contaminants in polyamide textiles used for manufacturing sport T-shirts. Talanta 88:496–501. https://doi.org/10.1016/j.talanta.2011.11.022 DOI
Monni S (2012) From landfilling to waste incineration: implications on GHG emissions of different actors. Int J Greenh Gas Control 8:82–89. https://doi.org/10.1016/J.IJGGC.2012.02.003 DOI
Moyen Massa G, Archodoulaki V-M (2024) An imported environmental crisis: plastic mismanagement in Africa. Sustainability 16:e672. https://doi.org/10.3390/su16020672 DOI
Nguyen T, Saleh MA (2017) Exposure of women to trace elements through the skin by direct contact with underwear clothing. J Environ Sci Health A 52(1):1–6. https://doi.org/10.1080/10934529.2016.1221212 DOI
Niinimäki K, Peters G, Dahlbo H, Perry P, Rissanen T, Gwilt A (2020) The environmental price of fast fashion. Nat Rev Earth Environ 1:189–200. https://doi.org/10.1038/s43017-020-0039-9 DOI
Nisar J, Ali G, Ullah N, Awan IA, Iqbal M, Shah A, Sirajuddin SM, Mahmood T, Khan MS (2018) Pyrolysis of waste tire rubber: influence of temperature on pyrolysates yield. J Environ Chem Eng 6(2):3469–3473. https://doi.org/10.1016/j.jece.2018.05.021 DOI
OEKO-TEX (2023) OEKO-TEX® STANDARD 100. https://www.oeko-tex.com/en/our-standards/oeko-tex-standard-100 . Accessed 28 Apr 2023
Özsin G, Pütün AE (2022) An investigation on pyrolysis of textile wastes: kinetics, thermodynamics, in-situ monitoring of evolved gasses and analysis of the char residue. J Environ Chem Eng 10(3):e107748. https://doi.org/10.1016/j.jece.2022.107748 DOI
Özuysal A, Akıncı G (2019) The assessment of refuse derived fuel (RDF) production from textile waste. Eurasian J Environ Res 3(2):27–32
Palacios-Mateo C, van der Meer Y, Seide G (2021) Analysis of the polyester clothing value chain to identify key intervention points for sustainability. Environ Sci Eur 33:e2. https://doi.org/10.1186/s12302-020-00447-x DOI
Patkowska-Sokoła B, Dobrzański Z, Osman K, Bodkowski R, Zygadli K (2009) The content of chosen chemical elements in wool of sheep of different origins and breeds. Arch Anim Breed 52:410–418. https://doi.org/10.5194/aab-52-410-2009 DOI
Pilar L, Borovec K, Szeliga Z, Górecki J (2021) Mercury emission from three lignite-fired power plants in the Czech Republic. Fuel Process Technol 212:e106628. https://doi.org/10.1016/J.FUPROC.2020.106628 DOI
Psomopoulos C (2014) Residue derived fuels as an alternative fuel for the Hellenic power generation sector and their potential for emissions reduction. AIMS Energy 2:321–341. https://doi.org/10.3934/ENERGY.2014.3.321 DOI
Psomopoulos CS, Kiskira K, Kalkanis K, Leligou HC, Themelis NJ (2022) The role of energy recovery from wastes in the decarbonization efforts of the EU power sector. IET Renew Power Gener 16:48–64. https://doi.org/10.1049/rpg2.12315 DOI
Qian W, Ji X, Xu P, Wang L (2021) Carbon footprint and water footprint assessment of virgin and recycled polyester textiles. Text Res J 91(21–22):2468–2475. https://doi.org/10.1177/00405175211006213 DOI
Rećko K (2022) Production of alternative fuels based on municipal sewage sludge and selected types of ELV waste. Energies 15:e5795. https://doi.org/10.3390/en15165795 DOI
Rezić I (2022) Historical textiles and their characterization. Cambridge Scholars Publishing, Cambridge
Rovira J, Nadal M, Schuhmacher M, Domingo JL (2017) Trace elements in skin-contact clothes and migration to artificial sweat: risk assessment of human dermal exposure. Text Res J 87(6):726–738. https://doi.org/10.1177/0040517516639816 DOI
Rujido-Santos I, Herbello-Hermelo P, Barciela-Alonso MC, Bermejo-Barrera P, Moreda-Piñeiro A (2022) Metal content in textile and (nano)textile products. Int J Environ Res Public Health 19(2):e944. https://doi.org/10.3390/ijerph19020944 DOI
Ryšavý J, Horák J, Hopan F, Kuboňová L, Krpec K, Molchanov O, Garba M, Ochodek T (2021) Influence of flue gas parameters on conversion rates of honeycomb catalysts. Sep Purif Technol 278:e119491. https://doi.org/10.1016/J.SEPPUR.2021.119491 DOI
Sánchez De Jaegher C (2024) Atacama Desert’s solastalgia: color and water for dumping. Biosemiotics. https://doi.org/10.1007/s12304-023-09551-w DOI
Sever Akdağ A, Atımtay A, Sanin FD (2016) Comparison of fuel value and combustion characteristics of two different RDF samples. Waste Manage 47(Part B):217–224. https://doi.org/10.1016/j.wasman.2015.08.037 DOI
Sülar V, Devrim G (2019) Biodegradation behaviour of different textile fibres: visual, morphological, structural properties and soil analyses. Fibres Text East Eur 27(1(133)):100–111. https://doi.org/10.5604/01.3001.0012.7751 DOI
Tian Z, Yang Y, Wang L (2020) An improved method for assessing environmental impacts caused by chemical pollutants: a case study in textiles production. Toxicol Ind Health 36(4):228–236. https://doi.org/10.1177/0748233720919662 DOI
Tillman DA, Duong D, Miller B (2009) Chlorine in solid fuels fired in pulverized fuel boilers — sources, forms, reactions, and consequences: a literature review. Energy Fuels 23(7):3379–3391. https://doi.org/10.1021/ef801024s DOI
Textile Exchange (2022) Preferred fiber & materials market report. Textile Exchange. https://textileexchange.org/knowledge-center/reports/materials-market-report-2022/ . Accessed 6 Apr 2024
Ütebay B, Çelik P, Çay A (2019) Effects of cotton textile waste properties on recycled fibre quality. J Clean Prod 222:29–35. https://doi.org/10.1016/j.jclepro.2019.03.033 DOI
Velusamy S, Roy A, Sundaram S, Kumar Mallick T (2021) A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem Rec 21(7):1570–1610. https://doi.org/10.1002/tcr.202000153 DOI
Wagland ST, Kilgallon P, Coveney R, Garg A, Smith R, Longhurst PJ, Pollard SJT, Simms N (2011) Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor. Waste Manage 31(6):1176–1183. https://doi.org/10.1016/j.wasman.2011.01.001 DOI
Wang S, Salmon S (2022) Progress toward circularity of polyester and cotton textiles. Sustain Chem 3:376–403. https://doi.org/10.3390/suschem3030024 DOI
Wang Y, Li L, Yao C, Tian X, Wu Y, Xie Q, Wang D (2021) Mercury in human hair and its implications for health investigation. Curr Opin Environ Sci Health 22:e100271. https://doi.org/10.1016/j.coesh.2021.100271 DOI
Wasilewski R, Bałazińska M (2018) Energy recovery from waste in the aspect of qualifications of electricity and heat as coming from renewable energy sources and to participate in the emissions trading system. Polityka Energetyczna - Energy Policy J 21(1):129–142
Wu Y, Wen C, Chen X, Jiang G, Liu G, Liu D (2017) Catalytic pyrolysis and gasification of waste textile under carbon dioxide atmosphere with composite Zn-Fe catalyst. Fuel Process Technol 166:115–123. https://doi.org/10.1016/j.fuproc.2017.05.025 DOI
Xu Z, Qi R, Xiong M, Zhang D, Gu H, Chen W (2021) Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: mechanisms and combustion behaviors. Bioresour Technol 321:e124450. https://doi.org/10.1016/j.biortech.2020.124450 DOI
Xueliang X (2020) Animal Fibers. In: Hu J, Kumar B, Lu J (Ed) Handbook of fibrous materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 37–74. https://doi.org/10.1002/9783527342587.ch2