Optimizing ChIRP-MS for Comprehensive Profiling of RNA-Protein Interactions in Arabidopsis thaliana: A Telomerase RNA Case Study

. 2024 Mar 15 ; 13 (6) : . [epub] 20240315

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38592918

Grantová podpora
20-01331X Czech Science Foundation
CZ.02.01.01/00/22_008/0004581 ERDF Programme

The current repertoire of methods available for studying RNA-protein interactions in plants is somewhat limited. Employing an RNA-centric approach, particularly with less abundant RNAs, presents various challenges. Many of the existing methods were initially designed for different model systems, with their application in plants receiving limited attention thus far. The Comprehensive Identification of RNA-Binding Proteins by Mass Spectrometry (ChIRP-MS) technique, initially developed for mammalian cells, has been adapted in this study for application in Arabidopsis thaliana. The procedures have been meticulously modified and optimized for telomerase RNA, a notable example of a low-abundance RNA recently identified. Following these optimization steps, ChIRP-MS can serve as an effective screening method for identifying candidate proteins interacting with any target RNA of interest.

Zobrazit více v PubMed

Li Y., Liu S., Cao L., Luo Y., Du H., Li S., Zhang Z., Guo X., Tian W., Wong C.C., et al. CBRPP: A New RNA-Centric Method to Study RNA-Protein Interactions. RNA Biol. 2021;18:1608–1621. doi: 10.1080/15476286.2021.1873620. PubMed DOI PMC

Chu C., Chang H.Y. ChIRP-MS: RNA-Directed Proteomic Discovery. Methods Mol. Biol. 2018;1861:37–45. doi: 10.1007/978-1-4939-8766-5_3. PubMed DOI

Chu C., Quinn J., Chang H.Y. Chromatin Isolation by RNA Purification (ChIRP) J. Vis. Exp. JoVE. 2012;61:3912. doi: 10.3791/3912. PubMed DOI PMC

Chu C., Chang H.Y. Understanding RNA-Chromatin Interactions Using Chromatin Isolation by RNA Purification (ChIRP) Methods Mol. Biol. 2016;1480:115–123. doi: 10.1007/978-1-4939-6380-5_10. PubMed DOI

Greider C.W., Blackburn E.H. A Telomeric Sequence in the RNA of Tetrahymena Telomerase Required for Telomere Repeat Synthesis. Nature. 1989;337:331–337. doi: 10.1038/337331a0. PubMed DOI

Xi L., Cech T.R. Inventory of Telomerase Components in Human Cells Reveals Multiple Subpopulations of hTR and hTERT. Nucleic Acids Res. 2014;42:8565–8577. doi: 10.1093/nar/gku560. PubMed DOI PMC

Podlevsky J.D., Chen J.J.-L. Evolutionary Perspectives of Telomerase RNA Structure and Function. RNA Biol. 2016;13:720–732. doi: 10.1080/15476286.2016.1205768. PubMed DOI PMC

Fajkus P., Peška V., Závodník M., Fojtová M., Fulnečková J., Dobias Š., Kilar A., Dvořáčková M., Zachová D., Nečasová I., et al. Telomerase RNAs in Land Plants. Nucleic Acids Res. 2019;47:9842–9856. doi: 10.1093/nar/gkz695. PubMed DOI PMC

Song J., Logeswaran D., Castillo-González C., Li Y., Bose S., Aklilu B.B., Ma Z., Polkhovskiy A., Chen J.J.-L., Shippen D.E. The Conserved Structure of Plant Telomerase RNA Provides the Missing Link for an Evolutionary Pathway from Ciliates to Humans. Proc. Natl. Acad. Sci. USA. 2019;116:24542–24550. doi: 10.1073/pnas.1915312116. PubMed DOI PMC

Wu J., Okada T., Fukushima T., Tsudzuki T., Sugiura M., Yukawa Y. A Novel Hypoxic Stress-Responsive Long Non-Coding RNA Transcribed by RNA Polymerase III in Arabidopsis. RNA Biol. 2012;9:302–313. doi: 10.4161/rna.19101. PubMed DOI

Song J., Castillo-González C., Ma Z., Shippen D.E. Arabidopsis Retains Vertebrate-Type Telomerase Accessory Proteins via a Plant-Specific Assembly. Nucleic Acids Res. 2021;49:9496–9507. doi: 10.1093/nar/gkab699. PubMed DOI PMC

Fajkus J., Fulnecková J., Hulánová M., Berková K., Ríha K., Matyásek R. Plant Cells Express Telomerase Activity upon Transfer to Callus Culture, without Extensively Changing Telomere Lengths. Mol. Gen. Genet. MGG. 1998;260:470–474. doi: 10.1007/s004380050918. PubMed DOI

Adamusová K., Khosravi S., Fujimoto S., Houben A., Matsunaga S., Fajkus J., Fojtová M. Two Combinatorial Patterns of Telomere Histone Marks in Plants with Canonical and Non-Canonical Telomere Repeats. Plant J. 2020;102:678–687. doi: 10.1111/tpj.14653. PubMed DOI

Chu C., Zhang Q.C., da Rocha S.T., Flynn R.A., Bharadwaj M., Calabrese J.M., Magnuson T., Heard E., Chang H.Y. Systematic Discovery of Xist RNA Binding Proteins. Cell. 2015;161:404–416. doi: 10.1016/j.cell.2015.03.025. PubMed DOI PMC

González-Bermúdez L., Anglada T., Genescà A., Martín M., Terradas M. Identification of Reference Genes for RT-qPCR Data Normalisation in Aging Studies. Sci. Rep. 2019;9:13970. doi: 10.1038/s41598-019-50035-0. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Viena, Austria: 2022.

Schauberger P., Walker A., Braglia L., Sturm J., Garbuszus J.M., Barbone J.M. Read, Write and Edit Xlsx Files. 2023. [(accessed on 20 September 2023)]. Available online: https://cran.r-project.org/web/packages/openxlsx/openxlsx.pdf.

Wickham H. Package ‘Tidyverse’. 2023. [(accessed on 20 September 2023)]. Available online: https://cran.r-project.org/web/packages/tidyverse/tidyverse.pdf.

Wickham H., François R., Henry L., Müller K., Vaughan D. Package ‘Dplyr’. 2023. [(accessed on 20 September 2023)]. Available online: https://dplyr.tidyverse.org/

Ahlmann-Eltze C., Patil I. Package ‘Ggsignif’. 2022. [(accessed on 20 September 2023)]. Available online: https://cran.r-project.org/web/packages/ggsignif/ggsignif.pdf.

Kassambara A. Package ‘Ggpubr’. 2023. [(accessed on 20 September 2023)]. Available online: https://cran.r-project.org/web/packages/ggpubr/ggpubr.pdf.

Stejskal K., Potěšil D., Zdráhal Z. Suppression of Peptide Sample Losses in Autosampler Vials. J. Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI

Wiśniewski J.R., Ostasiewicz P., Mann M. High Recovery FASP Applied to the Proteomic Analysis of Microdissected Formalin Fixed Paraffin Embedded Cancer Tissues Retrieves Known Colon Cancer Markers. J. Proteome Res. 2011;10:3040–3049. doi: 10.1021/pr200019m. PubMed DOI

Yeung Y.-G., Nieves E., Angeletti R., Stanley E.R. Removal of Detergents from Protein Digests for Mass Spectrometry Analysis. Anal. Biochem. 2008;382:135–137. doi: 10.1016/j.ab.2008.07.034. PubMed DOI PMC

Demichev V., Messner C.B., Vernardis S.I., Lilley K.S., Ralser M. DIA-NN: Neural Networks and Interference Correction Enable Deep Proteome Coverage in High Throughput. Nat. Methods. 2020;17:41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC

Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M., et al. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2021;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...