Contribution of host species and pathogen clade to snake fungal disease hotspots in Europe
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38600171
PubMed Central
PMC11006896
DOI
10.1038/s42003-024-06092-x
PII: 10.1038/s42003-024-06092-x
Knihovny.cz E-zdroje
- MeSH
- dermatomykózy * epidemiologie mikrobiologie MeSH
- hadi mikrobiologie MeSH
- ohnisko nemoci MeSH
- prevalence MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
Infectious diseases are influenced by interactions between host and pathogen, and the number of infected hosts is rarely homogenous across the landscape. Areas with elevated pathogen prevalence can maintain a high force of infection and may indicate areas with disease impacts on host populations. However, isolating the ecological processes that result in increases in infection prevalence and intensity remains a challenge. Here we elucidate the contribution of pathogen clade and host species in disease hotspots caused by Ophidiomyces ophidiicola, the pathogen responsible for snake fungal disease, in 21 species of snakes infected with multiple pathogen strains across 10 countries in Europe. We found isolated areas of disease hotspots in a landscape where infections were otherwise low. O. ophidiicola clade had important effects on transmission, and areas with multiple pathogen clades had higher host infection prevalence. Snake species further influenced infection, with most positive detections coming from species within the Natrix genus. Our results suggest that both host and pathogen identity are essential components contributing to increased pathogen prevalence.
1st Zoological Department Herpetological Collection Natural History Museum Vienna Austria
5 N Karazin Kharkiv National University Kharkiv Ukraine
Balaton Limnological Research Institute Tihany Hungary
Bavarian State Collection of Zoology Munich Germany
Biological Sciences Department Virginia Polytechnic Institute and State University Blacksburg VA USA
BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Campus de Vairão Vairão Portugal
Centre d'Etudes Biologiques de Chizé ULR CNRS UMR 7372 Villiers en Bois France
Department of Genetics Kazimierz Wielki University Bydgoszcz Poland
HUN REN ELTE MTM Integrative Ecology Research Group Budapest Hungary
Info fauna Karch Centre Suisse de Cartographie de la Faune Neuchâtel Switzerland
Institute of Animal Pathology University of Bern Bern Switzerland
Institute of Biology University of Neuchâtel Neuchâtel Switzerland
Le Grand Momesson Bouvron France
LPO Bourgogne Franche Comté Site de Franche Comté Maison de l'environnement de BFC Besançon France
MME BirdLife Hungary Budapest Hungary
NATRIX Herpetological Association Wroclaw Poland
School of Life Sciences Arizona State University Tempe AZ USA
U S Geological Survey National Wildlife Health Center Madison WI USA
Zobrazit více v PubMed
LaDeau SL, Kilpatrick AM, Marra PP. West Nile virus emergence and large-scale declines of North American bird populations. Nature. 2007;447:710–713. doi: 10.1038/nature05829. PubMed DOI
Holdo, R. M. et al. A disease-mediated trophic cascade in the serengeti and its implications for ecosystem C. Plos Biol.7, 10.1371/journal.pbio.1000210 (2009). PubMed PMC
Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett.15, 10.1111/j.1461-0248.2012.01829.x (2012). PubMed
Krauss S, et al. Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological ‘hot spot’ for influenza viruses. Proc. Biol. Sci. 2010;277:3373–3379. PubMed PMC
Paull SH, et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 2012;10:75–82. doi: 10.1890/110111. PubMed DOI PMC
Brown VL, et al. Dissecting a wildlife disease hotspot: the impact of multiple host species, environmental transmission and seasonality in migration, breeding and mortality. J. R. Soc. Interface. 2013;10:20120804. doi: 10.1098/rsif.2012.0804. PubMed DOI PMC
Wilber MQ, Johnson PTJ, Briggs CJ. Disease hotspots or hot species? Infection dynamics in multi-host metacommunities controlled by species identity, not source location. Ecol. Lett. 2020;23:1201–1211. doi: 10.1111/ele.13518. PubMed DOI PMC
Kilpatrick AM. Facilitating the evolution of resistance to avian malaria in Hawaiian birds. Biol. Conserv. 2006;128:475–485. doi: 10.1016/j.biocon.2005.10.014. DOI
Laggan NA, et al. Host infection and disease-induced mortality modify species contributions to the environmental reservoir. Ecology. 2023;104:e4147. doi: 10.1002/ecy.4147. PubMed DOI
van Riper C, van Riper SG, Goff ML, Laird M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 1986;56:327–344. doi: 10.2307/1942550. DOI
Voyles J, et al. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science. 2009;326:582–585. doi: 10.1126/science.1176765. PubMed DOI
Langwig KE, et al. Resistance in persisting bat populations after white-nose syndrome invasion. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160044. doi: 10.1098/rstb.2016.0044. PubMed DOI PMC
Haydon DT, Cleaveland S, Taylor LH, Laurenson MK. Identifying reservoirs of infection: A conceptual and practical challenge. Emerg. Infect. Dis. 2002;8:1468–1473. doi: 10.3201/eid0812.010317. PubMed DOI PMC
Ashford RW. When is a reservoir not a reservoir? Emerg. Infect. Dis. 2003;9:1495–1496. doi: 10.3201/eid0911.030088. PubMed DOI PMC
Balaz V, et al. Assessing risk and guidance on monitoring of Batrachochytrium dendrobatidis in Europe through identification of taxonomic selectivity of infection. Conserv Biol. 2014;28:213–223. doi: 10.1111/cobi.12128. PubMed DOI
O’Hanlon SJ, et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science. 2018;360:621–627. doi: 10.1126/science.aar1965. PubMed DOI PMC
Greener MS, et al. Presence of low virulence chytrid fungi could protect European amphibians from more deadly strains. Nat. Commun. 2020;11:5393. doi: 10.1038/s41467-020-19241-7. PubMed DOI PMC
Li KS, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature. 2004;430:209–213. doi: 10.1038/nature02746. PubMed DOI
Becker CG, et al. Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fungal Ecol. 2017;26:45–50. doi: 10.1016/j.funeco.2016.11.007. DOI
Hawley DM, et al. Parallel patterns of increased virulence in a recently emerged wildlife pathogen. PLoS Biol. 2013;11:e1001570. doi: 10.1371/journal.pbio.1001570. PubMed DOI PMC
Pandey A, Mideo N, Platt TG. Virulence evolution of pathogens that can grow in reservoir environments. Am. Nat. 2022;199:141–158. doi: 10.1086/717177. PubMed DOI
McLeod DV, Gandon S. Effects of epistasis and recombination between vaccine-escape and virulence alleles on the dynamics of pathogen adaptation. Nat. Ecol. Evol. 2022;6:786–793. doi: 10.1038/s41559-022-01709-y. PubMed DOI
Gandon S, Michalakis Y. Evolution of parasite virulence against qualitative or quantitative host resistance. Proc. Biol. Sci. 2000;267:985–990. doi: 10.1098/rspb.2000.1100. PubMed DOI PMC
Urbina J, Bredeweg EM, Garcia TS, Blaustein AR. Host–pathogen dynamics among the invasive American bullfrog (Lithobates catesbeianus) and chytrid fungus (Batrachochytrium dendrobatidis) Hydrobiologia. 2018;817:267–277. doi: 10.1007/s10750-018-3614-z. DOI
Ribeiro LP, et al. Bullfrog farms release virulent zoospores of the frog-killing fungus into the natural environment. Sci. Rep. 2019;9:13422. doi: 10.1038/s41598-019-49674-0. PubMed DOI PMC
McClure KM, Fleischer RC, Kilpatrick AM. The role of native and introduced birds in transmission of avian malaria in Hawaii. Ecology. 2020;101:e03038. doi: 10.1002/ecy.3038. PubMed DOI PMC
Davy CM, et al. Revisiting Ophidiomycosis (snake fungal disease) after a decade of targeted research. Front Vet. Sci. 2021;8:665805. doi: 10.3389/fvets.2021.665805. PubMed DOI PMC
Lorch JM, et al. Snake fungal disease: an emerging threat to wild snakes. Philos. Trans. R. Soc. B Biol. Sci. 2016;371:20150457. doi: 10.1098/rstb.2015.0457. PubMed DOI PMC
Burbrink FT, Lorch JM, Lips KR. Host susceptibility to snake fungal disease is highly dispersed across phylogenetic and functional trait space. Sci. Adv. 2017;3:e1701387. doi: 10.1126/sciadv.1701387. PubMed DOI PMC
Franklinos LH, et al. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes. Sci. Rep. 2017;7:1–7. doi: 10.1038/s41598-017-03352-1. PubMed DOI PMC
Meier G, Notomista T, Marini D, Ferri V. First case of Snake Fungal Disease affecting a free-ranging Natrix natrix (LINNAEUS, 1758) in Ticino Canton, Switzerland. Herpetol. Notes. 2018;11:885–891.
Sun PL, et al. Infection with Nannizziopsis guarroi and Ophidiomyces ophiodiicola in reptiles in Taiwan. Transbound. Emerg. Dis. 2021;69:764–775. doi: 10.1111/tbed.14049. PubMed DOI
Allender MC, et al. Ophidiomycosis, an emerging fungal disease of snakes: Targeted surveillance on military lands and detection in the western US and Puerto Rico. PloS one. 2020;15:e0240415. doi: 10.1371/journal.pone.0240415. PubMed DOI PMC
Grioni A, et al. Detection of Ophidiomyces ophidiicola in a wild Burmese python (Python bivittatus) in Hong Kong SAR, China. J. Herpetological Med. Surg. 2021;31:283–291. doi: 10.5818/JHMS-S-20-00018. DOI
Sutherland WJ, et al. A horizon scan of global conservation issues for 2014. Trends Ecol. Evol. 2014;29:15–22. doi: 10.1016/j.tree.2013.11.004. PubMed DOI PMC
Allender MC, Raudabaugh DB, Gleason FH, Miller AN. The natural history, ecology, and epidemiology of Ophidiomyces ophiodiicola and its potential impact on free-ranging snake populations. Fungal Ecol. 2015;17:187–196. doi: 10.1016/j.funeco.2015.05.003. DOI
Rajeev S, et al. Isolation and characterization of a new fungal species, Chrysosporium ophiodiicola, from a mycotic granuloma of a black rat snake (Elaphe obsoleta obsoleta) J. Clin. Microbiol. 2009;47:1264–1268. doi: 10.1128/JCM.01751-08. PubMed DOI PMC
McKenzie JM, et al. Field diagnostics and seasonality of Ophidiomyces ophiodiicola in wild snake populations. EcoHealth. 2019;16:141–150. doi: 10.1007/s10393-018-1384-8. PubMed DOI
Lind C, et al. Patterns of circulating corticosterone in a population of rattlesnakes afflicted with Snake Fungal Disease: stress hormones as a potential mediator of seasonal cycles in disease severity and outcomes. Physiol. Biochem. Zool. 2018;91:765–775. doi: 10.1086/695747. PubMed DOI
Allender MC, et al. Chrysosporium sp. infection in eastern massasauga rattlesnakes. Emerg. Infect. Dis. 2011;17:2383. doi: 10.3201/eid1712.110240. PubMed DOI PMC
Ladner JT, et al. The population genetics of the causative agent of snake fungal disease indicate recent introductions to the USA. PLoS Biol. 2022;20:e3001676. doi: 10.1371/journal.pbio.3001676. PubMed DOI PMC
Přibyl M, et al. Ophidiomyces ophidiicola in free-ranging and captive snakes in the Czech and Slovak Republics. J. Vertebrate Biol. 2023;72:23050. doi: 10.25225/jvb.23050. DOI
Marini D, et al. Pilot survey reveals ophidiomycosis in dice snakes Natrix tessellata from Lake Garda, Italy. Vet. Res. Commun. 2023 doi: 10.1007/s11259-023-10129-7. PubMed DOI PMC
Origgi, F. C. et al. Ophidiomyces ophiodiicola, the etiologic agent of snake fungal disease, is present in Europe since the late 1950’s. Emerging Infect. Dis.28, 10.3201/eid2810.220564 (2022). PubMed PMC
Dillon RM, et al. Seasonal and interspecific variation in the prevalence of Ophidiomyces ophidiicola and ophidiomycosis in a community of free-ranging snakes. J. Wildl. Dis. 2020;58:791–802. PubMed
McCoy CM, Lind CM, Farrell TM. Environmental and physiological correlates of the severity of clinical signs of snake fungal disease in a population of pigmy rattlesnakes, Sistrurus miliarius. Conserv. Physiol. 2017;5:cow077. doi: 10.1093/conphys/cow077. PubMed DOI PMC
Haynes E, et al. Ophidiomycosis surveillance of snakes in Georgia, USA reveals new host species and taxonomic associations with disease. Sci. Rep. 2020;10:1–15. PubMed PMC
Chandler HC, et al. Ophidiomycosis prevalence in Georgia’s Eastern Indigo Snake (Drymarchon couperi) populations. PLoS One. 2019;14:e0218351. doi: 10.1371/journal.pone.0218351. PubMed DOI PMC
Dubey S, et al. Fungal infection in free-ranging snakes caused by opportunistic species. Emerg. Anim. Species. 2022;3:100001. doi: 10.1016/j.eas.2022.100001. DOI
Dorcas, M. E. & Willson, J. D. Innovative methods for studies of snake ecology and conservation. Snakes Ecol. Conserv., 5–37, 10.7591/9780801459092-005 (2009).
Hyatt AD, et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 2007;73:175–192. doi: 10.3354/dao073175. PubMed DOI
Bohuski E, Lorch JM, Griffin KM, Blehert DS. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease. BMC Vet. Res. 2015;11:95. doi: 10.1186/s12917-015-0407-8. PubMed DOI PMC
White, T. J., Bruns, T., Lee, S. & Taylor, J. in PCR Protocols: A Guide to Methods and Applications (eds M. A. Innis, D. H. Gelfland, J. J. Sninsky, & T. J. White) 315–322 (Academic Press Inc., 1990).
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Lawson AB, Rotejanaprasert C. Childhood brain cancer in Florida: a bayesian clustering approach. Stat. Public Policy. 2014;1:99–107. doi: 10.1080/2330443X.2014.970247. DOI
Bürkner P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017;80:1–28. doi: 10.18637/jss.v080.i01. DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2022).