Multi-Omic Analysis of Esophageal Adenocarcinoma Uncovers Candidate Therapeutic Targets and Cancer-Selective Posttranscriptional Regulation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38604503
PubMed Central
PMC11245951
DOI
10.1016/j.mcpro.2024.100764
PII: S1535-9476(24)00054-9
Knihovny.cz E-zdroje
- Klíčová slova
- biomarker, esophageal adenocarcinoma, multiomics, proteogenomics, proteomics,
- MeSH
- adenokarcinom * genetika metabolismus patologie MeSH
- lidé MeSH
- multiomika MeSH
- nádorové biomarkery * metabolismus genetika MeSH
- nádory jícnu * genetika metabolismus patologie MeSH
- posttranskripční úpravy RNA MeSH
- proteom metabolismus MeSH
- proteomika * metody MeSH
- regulace genové exprese u nádorů * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nádorové biomarkery * MeSH
- proteom MeSH
Efforts to address the poor prognosis associated with esophageal adenocarcinoma (EAC) have been hampered by a lack of biomarkers to identify early disease and therapeutic targets. Despite extensive efforts to understand the somatic mutations associated with EAC over the past decade, a gap remains in understanding how the atlas of genomic aberrations in this cancer impacts the proteome and which somatic variants are of importance for the disease phenotype. We performed a quantitative proteomic analysis of 23 EACs and matched adjacent normal esophageal and gastric tissues. We explored the correlation of transcript and protein abundance using tissue-matched RNA-seq and proteomic data from seven patients and further integrated these data with a cohort of EAC RNA-seq data (n = 264 patients), EAC whole-genome sequencing (n = 454 patients), and external published datasets. We quantified protein expression from 5879 genes in EAC and patient-matched normal tissues. Several biomarker candidates with EAC-selective expression were identified, including the transmembrane protein GPA33. We further verified the EAC-enriched expression of GPA33 in an external cohort of 115 patients and confirm this as an attractive diagnostic and therapeutic target. To further extend the insights gained from our proteomic data, an integrated analysis of protein and RNA expression in EAC and normal tissues revealed several genes with poorly correlated protein and RNA abundance, suggesting posttranscriptional regulation of protein expression. These outlier genes, including SLC25A30, TAOK2, and AGMAT, only rarely demonstrated somatic mutation, suggesting post-transcriptional drivers for this EAC-specific phenotype. AGMAT was demonstrated to be overexpressed at the protein level in EAC compared to adjacent normal tissues with an EAC-selective, post-transcriptional mechanism of regulation of protein abundance proposed. Integrated analysis of proteome, transcriptome, and genome in EAC has revealed several genes with tumor-selective, posttranscriptional regulation of protein expression, which may be an exploitable vulnerability.
Department of Pathology Royal Infirmary of Edinburgh Edinburgh United Kingdom
Edinburgh Pathology Institute of Genetics and Cancer University of Edinburgh Edinburgh Scotland
Institute of Genetics and Cancer University of Gdansk Gdansk Poland
International Center for Cancer Vaccine Science University of Gdansk Gdansk Poland
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2018;68:394–424. PubMed
Then E.O., Lopez M., Saleem S., Gayam V., Sunkara T., Culliford A., et al. Esophageal cancer: an updated surveillance epidemiology and end results database analysis. World J. Oncol. 2020;11:55–64. PubMed PMC
Edgren G., Adami H.-O., Weiderpass E., Nyrén O., Nyrén O. A global assessment of the oesophageal adenocarcinoma epidemic. Gut. 2013;62:1406–1414. PubMed
Killcoyne S., Fitzgerald R.C. Evolution and progression of Barrett’s oesophagus to oesophageal cancer. Nat. Rev. Cancer. 2021;21:731–741. PubMed
Rahman S.A., Walker R.C., Maynard N., Trudgill N., Crosby T., Cromwell D.A., et al. The AUGIS survival predictor: prediction of long-term and conditional survival after esophagectomy using random survival forests. Ann. Surg. 2021;277:267–274. PubMed PMC
Thrift A.P. The epidemic of oesophageal carcinoma: where are we now? Cancer Epidemiol. 2016;41:88–95. PubMed
Pilonis N.D., Killcoyne S., Tan W.K., O'Donovan M., Malhotra S., Tripathi M., et al. Use of a Cytosponge biomarker panel to prioritise endoscopic Barrett’s oesophagus surveillance: a cross-sectional study followed by a real-world prospective pilot. Lancet Oncol. 2022;23:270–278. PubMed PMC
Al-Batran S.-E., Homann N., Pauligk C., Goetze T.O., Meiler J., Kasper S., et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet. 2019;393:1948–1957. PubMed
Coleman H.G., Xie S.-H., Lagergren J. The epidemiology of esophageal adenocarcinoma. Gastroenterology. 2018;154:390–405. PubMed
Chen J., Jiang Y., Chang T.S., Rubenstein J.H., Kwon R.S., Wamsteker E.J., et al. Detection of Barrett’s neoplasia with a near-infrared fluorescent heterodimeric peptide. Endoscopy. 2022;54:1198–1204. PubMed PMC
Frankell A.M., Jammula S., Li X., Contino G., Killcoyne S., Abbas S., et al. The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic. Nat. Genet. 2019;51:506–516. PubMed PMC
O’Neill J.R. An overview of mass spectrometry-based methods for functional proteomics. Methods Mol. Biol. 2019;1871:179–196. PubMed
O’Neill J.R., Pak H.S., Pairo-Castineira E., Save V., Paterson-Brown S., Nenutil R., et al. Quantitative shotgun proteomics unveils candidate novel esophageal adenocarcinoma (EAC)-specific proteins. Mol. Cell. Proteomics. 2017;16:1138–1150. PubMed PMC
Kim J. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–175. PubMed PMC
Dai J.Y., Wang X., Buas M.F., Zhang C., Ma J., Wei B., et al. Whole-genome sequencing of esophageal adenocarcinoma in Chinese patients reveals distinct mutational signatures and genomic alterations. Commun. Biol. 2018;1:1–9. PubMed PMC
Bratlie S.O., Wallenius V., Edebo A., Fändriks L., Casselbrant A. Proteomic approach to the potential role of angiotensin II in Barrett dysplasia. Proteomics Clin. Appl. 2019;13 PubMed
Weke K., Singh A., Uwugiaren N., Alfaro J.A., Wang T., Hupp T.R., et al. MicroPOTS analysis of Barrett’s esophageal cell line models identifies proteomic changes after physiologic and radiation stress. J. Proteome Res. 2021;20:2195–2205. PubMed PMC
Kessner D., Chambers M., Burke R., Agus D., Mallick P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics. 2008;24:2534–2536. PubMed PMC
Kim S., Pevzner P.A. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 2014;5:5277. PubMed PMC
Ivanov M.V., Levitsky L.I., Bubis J.A., Gorshkov M.V. Scavager: a versatile postsearch validation algorithm for shotgun proteomics based on gradient boosting. Proteomics. 2019;19 PubMed
Röst H.L., Schmitt U., Aebersold R., Malmström L. pyOpenMS: a Python-based interface to the OpenMS mass-spectrometry algorithm library. Proteomics. 2014;14:74–77. PubMed
Benjamini Y., Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001;29:1165–1188.
Wang D., Eraslan B., Wieland T., Hallström B., Hopf T., Zolg D.P., et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 2019;15 PubMed PMC
Jiang L., Wang M., Lin S., Jian R., Li X., Chan J., et al. A quantitative proteome map of the human body. Cell. 2020;183:269–283.e19. PubMed PMC
Consortium T. Gte. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–1330. PubMed PMC
Robinson M.D., Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. PubMed PMC
Auton A., Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. PubMed PMC
Kandoth C., Gao J., qwangmsk, Mattioni M., Struck A., Boursin Y., et al. mskcc/vcf2maf: vcf2maf v1.6.16 (v1.6.16) Zenodo. 2018 doi: 10.5281/zenodo.1185418. DOI
Heath J.K., White S.J., Johnstone C.N., Catimel B., Simpson R.J., Moritz R.L., et al. The human A33 antigen is a transmembrane glycoprotein and a novel member of the immunoglobulin superfamily. Proc. Natl. Acad. Sci. U. S. A. 1997;94:469–474. PubMed PMC
van Niel G., Raposo G., Candalh C., Boussac M., Hershberg R., Cerf-Bensussan N., et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001;121:337–349. PubMed
Owen R.P., White M.J., Severson D.T., Braden B., Bailey A., Goldin R., et al. Single cell RNA-seq reveals profound transcriptional similarity between Barrett’s oesophagus and oesophageal submucosal glands. Nat. Commun. 2018;9:4261. PubMed PMC
Maunoury R., Robine S., Pringault E., Léonard N., Gaillard J.A., Louvard D. Developmental regulation of villin gene expression in the epithelial cell lineages of mouse digestive and urogenital tracts. Development. 1992;115:717–728. PubMed
Nowicki-Osuch K., Zhuang L., Jammula S., Bleaney C.W., Mahbubani K.T., Devonshire G., et al. Molecular phenotyping reveals the identity of Barrett’s esophagus and its malignant transition. Science. 2021;373:760–767. PubMed
Liu Y.-Q., Chu L.Y., Yang T., Zhang B., Zheng Z.T., Xie J.J., et al. Serum DSG2 as a potential biomarker for diagnosis of esophageal squamous cell carcinoma and esophagogastric junction adenocarcinoma. Biosci. Rep. 2022;42 PubMed PMC
Pavlov K., Honing J., Meijer C., Boersma-van Ek W., Peters F.T.M., van den Berg A., et al. GATA6 expression in Barrett’s oesophagus and oesophageal adenocarcinoma. Dig. Liver Dis. 2015;47:73–80. PubMed
Dai Y., Wang Q., Gonzalez Lopez A., Anders M., Malfertheiner P., Vieth M., et al. Genome-wide analysis of Barrett’s adenocarcinoma. A first step towards identifying patients at risk and developing therapeutic paths. Transl. Oncol. 2018;11:116–124. PubMed PMC
Scanlan M.J., Simpson A.J.G., Old L.J. The cancer/testis genes: review, standardization, and commentary. Cancer Immun. 2004;4:1. PubMed
Tang W.-W., Liu Z.-H., Yang T.-X., Wang H.-J., Cao X.-F. Upregulation of MAGEA4 correlates with poor prognosis in patients with early stage of esophageal squamous cell carcinoma. Oncotargets Ther. 2016;9:4289–4293. PubMed PMC
Zhang Y., Zhang Y., Zhang L. Expression of cancer–testis antigens in esophageal cancer and their progress in immunotherapy. J. Cancer Res. Clin. Oncol. 2019;145:281–291. PubMed PMC
Hong D.S., Jalal S.I., Elimova E., Ajani J.A., Murphy M.A.B., Cervantes A., Evans T.R.J., et al. SURPASS-2 trial design: a phase 2, open-label study of ADP-A2M4CD8 SPEAR T cells in advanced esophageal or esophagogastric junction cancers. J Clin Oncol. 2022;40:TPS363.
Hammer N.A., Hansen T.V.O., Byskov A.G., Rajpert-De Meyts E., Grøndahl M.L., Bredkjaer H.E., et al. Expression of IGF-II mRNA-binding proteins (IMPs) in gonads and testicular cancer. Reproduction. 2005;130:203–212. PubMed
Chen H.-M., Lin C.C., Chen W.S., Jiang J.K., Yang S.H., Chang S.C., et al. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is a prognostic biomarker and associated with chemotherapy responsiveness in colorectal. Cancer Int. J. Mol. Sci. 2021;22:6940. PubMed PMC
Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–342. PubMed
Yang F., Cai S., Ling L., Zhang H., Tao L., Wang Q. Identification of a five-gene prognostic model and its potential drug repurposing in colorectal cancer based on TCGA, GTEx and GEO databases. Front. Genet. 2020;11:622659. PubMed PMC
Thul P.J., Åkesson L., Wiking M., Mahdessian D., Geladaki A., Ait Blal H., et al. A subcellular map of the human proteome. Science. 2017;356 PubMed
Shibata Y., Haruki N., Kuwabara Y., Ishiguro H., Shinoda N., Sato A., et al. Chfr expression is downregulated by CpG island hypermethylation in esophageal cancer. Carcinogenesis. 2002;23:1695–1699. PubMed
Soutto M., Peng D., Razvi M., Ruemmele P., Hartmann A., Roessner A., et al. Epigenetic and genetic silencing of CHFR in esophageal adenocarcinomas. Cancer. 2010;116:4033–4042. PubMed PMC
Shan L., Zhao M., Lu Y., Ning H., Yang S., Song Y., et al. CENPE promotes lung adenocarcinoma proliferation and is directly regulated by FOXM1. Int. J. Oncol. 2019;55:257–266. PubMed
Zhu X., Luo X., Feng G., Huang H., He Y., Ma W., et al. CENPE expression is associated with its DNA methylation status in esophageal adenocarcinoma and independently predicts unfavorable overall survival. PLoS One. 2019;14 PubMed PMC
Wilhelm M., Schlegl J., Hahne H., Gholami A.M., Lieberenz M., Savitski M.M., et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509:582–587. PubMed
Eraslan B., Wang D., Gusic M., Prokisch H., Hallström B.M., Uhlén M., et al. Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues. Mol. Syst. Biol. 2019;15 PubMed PMC
Edfors F., Danielsson F., Hallström B.M., Käll L., Lundberg E., Pontén F., et al. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol. 2016;12:883. PubMed PMC
Zhu H., Yin J., Chen D., He S., Chen H. Agmatinase promotes the lung adenocarcinoma tumorigenesis by activating the NO-MAPKs-PI3K/Akt pathway. Cell Death Dis. 2019;10:1–15. PubMed PMC
Secrier M., Li X., de Silva N., Eldridge M.D., Contino G., Bornschein J., et al. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 2016;48:1131–1141. PubMed PMC
Zhou R.-B., Lu X.-L., Zhang C.-Y., Yin D.-C. RNA binding motif protein 3: a potential biomarker in cancer and therapeutic target in neuroprotection. Oncotarget. 2017;8:22235–22250. PubMed PMC
Jonsson L., Hedner C., Gaber A., Korkocic D., Nodin B., Uhlén M., et al. High expression of RNA-binding motif protein 3 in esophageal and gastric adenocarcinoma correlates with intestinal metaplasia-associated tumours and independently predicts a reduced risk of recurrence and death. Biomark. Res. 2014;2:11. PubMed PMC
Garinchesa P., Sakamoto J., Welt S., Real F., Rettig W., Old L. Organ-specific expression of the colon cancer antigen A33, a cell surface target for antibody-based therapy. Int. J. Oncol. 1996;9:465–471. PubMed
Wu Z., Guo H.-F., Xu H., Cheung N.-K.V. Development of a tetravalent anti-GPA33/anti-CD3 bispecific antibody for colorectal cancers. Mol. Cancer Ther. 2018;17:2164–2175. PubMed PMC
Moore P.A., Shah K., Yang Y., Alderson R., Roberts P., Long V., et al. Development of MGD007, a gpA33 x CD3-bispecific DART protein for T-cell immunotherapy of metastatic colorectal cancer. Mol. Cancer Ther. 2018;17:1761–1772. PubMed
Infante J.R., Bendell J.C., Goff L.W., Jones S.F., Chan E., Sudo T., et al. Safety, pharmacokinetics and pharmacodynamics of the anti-A33 fully-human monoclonal antibody, KRN330, in patients with advanced colorectal cancer. Eur. J. Cancer. 2013;49:1169–1175. PubMed
Opstelten R., de Kivit S., Slot M.C., van den Biggelaar M., Iwaszkiewicz-Grześ D., Gliwiński M., et al. GPA33: a marker to identify stable human regulatory T cells. J. Immunol. 2020;204:3139–3148. PubMed
Buccitelli C., Selbach M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 2020;21:630–644. PubMed
Kosti I., Jain N., Aran D., Butte A.J., Sirota M. Cross-tissue analysis of gene and protein expression in normal and cancer tissues. Sci. Rep. 2016;6 PubMed PMC
Liu Y., Beyer A., Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:535–550. PubMed
Cheung H.C., Hai T., Zhu W., Baggerly K.A., Tsavachidis S., Krahe R., et al. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain. 2009;132:2277–2288. PubMed PMC
Rochette L., Meloux A., Zeller M., Malka G., Cottin Y., Vergely C. Mitochondrial SLC25 carriers: novel targets for cancer therapy. Molecules. 2020;25:2417. PubMed PMC
Maru D.M., Singh R.R., Hannah C., Albarracin C.T., Li Y.X., Abraham R., et al. MicroRNA-196a is a potential marker of progression during Barrett’s metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus. Am. J. Pathol. 2009;174:1940–1948. PubMed PMC
Zaidi A.H., Gopalakrishnan V., Kasi P.M., Zeng X., Malhotra U., Balasubramanian J., et al. Evaluation of a 4-protein serum biomarker panel-biglycan, annexin-A6, myeloperoxidase, and protein S100-A9 (B-AMP)-for the detection of esophageal adenocarcinoma. Cancer. 2014;120:3902–3913. PubMed PMC
Koul H.K., Pal M., Koul S. Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer. 2013;4:342–359. PubMed PMC
Zou X., Blank M. Targeting p38 MAP kinase signaling in cancer through post-translational modifications. Cancer Lett. 2017;384:19–26. PubMed
Salazar C., Barros M., Elorza A.A., Ruiz L.M. Dynamic distribution of HIG2A between the mitochondria and the nucleus in response to hypoxia and oxidative stress. Int. J. Mol. Sci. 2021;23:389. PubMed PMC
Schöbinger M., Klein O.-J., Mitulović G. Low-temperature mobile phase for peptide trapping at elevated separation temperature prior to nano RP-HPLC-MS/MS. Separations. 2016;3:6.
Tóth G., Panić-Janković T., Mitulović G. Pillar array columns for peptide separations in nanoscale reversed-phase chromatography. J Chromatogr A. 2019;1603:426–432. PubMed
Rice T.W., Gress D.M., Patil D.T., Hofstetter W.L., Kelsen D.P., Blackstone E.H. Cancer of the esophagus and esophagogastric junction-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67:304–317. PubMed