Quantitative Shotgun Proteomics Unveils Candidate Novel Esophageal Adenocarcinoma (EAC)-specific Proteins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
MC_UU_12018/25
Medical Research Council - United Kingdom
094417/Z/10/Z
Wellcome Trust - United Kingdom
PubMed
28336725
PubMed Central
PMC5461543
DOI
10.1074/mcp.m116.065078
PII: S1535-9476(20)32375-6
Knihovny.cz E-zdroje
- MeSH
- adenokarcinom metabolismus MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové proteiny metabolismus MeSH
- nádory jícnu metabolismus MeSH
- proteomika metody MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové biomarkery MeSH
- nádorové proteiny MeSH
Esophageal cancer is the eighth most common cancer worldwide and the majority of patients have systemic disease at presentation. Esophageal adenocarcinoma (OAC), the predominant subtype in western countries, is largely resistant to current chemotherapy regimens. Selective markers are needed to enhance clinical staging and to allow targeted therapies yet there are minimal proteomic data on this cancer type. After histological review, lysates from OAC and matched normal esophageal and gastric samples from seven patients were subjected to LC MS/MS after tandem mass tag labeling and OFFGEL fractionation. Patient matched samples of OAC, normal esophagus, normal stomach, lymph node metastases and uninvolved lymph nodes were used from an additional 115 patients for verification of expression by immunohistochemistry (IHC).Over six thousand proteins were identified and quantified across samples. Quantitative reproducibility was excellent between technical replicates and a moderate correlation was seen across samples with the same histology. The quantitative accuracy was verified across the dynamic range for seven proteins by immunohistochemistry (IHC) on the originating tissues. Multiple novel tumor-specific candidates are proposed and EPCAM was verified by IHC.This shotgun proteomic study of OAC used a comparative quantitative approach to reveal proteins highly expressed in specific tissue types. Novel tumor-specific proteins are proposed and EPCAM was demonstrated to be specifically overexpressed in primary tumors and lymph node metastases compared with surrounding normal tissues. This candidate and others proposed in this study could be developed as tumor-specific targets for novel clinical staging and therapeutic approaches.
§§Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno
§Department of Surgery Royal Infirmary of Edinburgh
¶Department of Human Protein Sciences Faculty of Medicine University of Geneva
**MRC Human Genetics Unit Institute of Genetics and Molecular Medicine Edinburgh University
Zobrazit více v PubMed
Jemal A., Bray F., Center M. M., Ferlay J., Ward E., and Forman D. (2011) Global cancer statistics. CA Cancer J. Clin. 61, 69–90 PubMed
Lepage C., Rachet B., Jooste V., Faivre J., and Coleman M. P. (2008) Continuing rapid increase in esophageal adenocarcinoma in England and Wales. Am. J. Gastroenterol. 103, 2694–2699 PubMed
Pohl H., and Welch H. (2005) The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J. Natl. Cancer Inst. 97, 142–146 PubMed
Groene O., Cromwell D., Hardwick R., Riley S., Crosby T., and Greeenaway K. (2012) National Oesophago-Gastric Cancer Audit. Royal College of Surgeons of England
Allum W. H., Blazeby J. M., Griffin S. M., Cunningham D., Jankowski J. A., and Wong R., Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland, the British Society of Gastroenterology and the British Association of Surgical Oncology. (2011) Guidelines for the management of oesophageal and gastric cancer. Gut 60, 1449–1472 PubMed
O'Neill J. R., Kennedy E. D., Save V., Langdale-Brown B., Wall L., Skipworth R. J. E., and Paterson-Brown S. (2017) Patients unfit for neoadjuvant therapy may still undergo resection of locally advanced esophageal or esophagogastric junctional cancer with acceptable oncological results. IJS Oncol. 2, e09 PubMed PMC
Dikken J. L., van Sandick J. W., Allum W. H., Johansson J., Jensen L. S., Putter H., Coupland V. H., Wouters M. W., Lemmens V. E., van de Velde C. J., van der Geest L. G., Larsson H. J., Cats A., and Verheij M. (2013) Differences in outcomes of oesophageal and gastric cancer surgery across Europe. Br. J. Surg. 100, 83–94 PubMed
Fischer C., Lingsma H., Hardwick R., Cromwell D. A., Steyerberg E., and Groene O. (2016) Risk adjustment models for short-term outcomes after surgical resection for oesophagogastric cancer. Br. J. Surg. 103, 105–116 PubMed
McElroy M., Kaushal S., Luiken G. A., Talamini M. A., Moossa A. R., Hoffman R. M., and Bouvet M. (2008) Imaging of primary and metastatic pancreatic cancer using a fluorophore-conjugated anti-CA19–9 antibody for surgical navigation. World J. Surg. 32, 1057–1066 PubMed PMC
Souza R. F., Krishnan K., and Spechler S. J. (2008) Acid, bile, and CDX: the ABCs of making Barrett's metaplasia. Am. J. Physiol. Gastrointest. Liver Physiol. 295, 1–218 PubMed
Gertler R., Stein H. J., Langer R., Nettelmann M., Schuster T., Hoefler H., Siewert J. R., and Feith M. (2011) Long-term outcome of 2920 patients with cancers of the esophagus and esophagogastric junction: evaluation of the New Union Internationale Contre le Cancer/American Joint Cancer Committee staging system. Ann. Surg. 253, 689–698 PubMed
Weaver J. M., Ross-Innes C. S., Shannon N., Lynch A., Forshew T., Barbera M., Murtaza M., Ong C. A., Lao-Sirieix P., Dunning M. J., Smith L., Smith M. L., Anderson C. L., Carvalho B., O'Donovan M., Underwood T. J., May A. P., Grehan N., Hardwick R., Davies J., Oloumi A., Aparicio S., Caldas C., Eldridge M. D., Edwards P. A., Rosenfeld N., Tavaré S., Fitzgerald R. C., and OCCAMS Consortium (2014) Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat. Genet. 46, 837–843 PubMed PMC
McGranahan N., Furness A. J., Rosenthal R., Ramskov S., Lyngaa R., Saini S. K., Jamal-Hanjani M., Wilson G. A., Birkbak N. J., Hiley C. T., Watkins T. B., Shafi S., Murugaesu N., Mitter R., Akarca A. U., Linares J., Marafioti T., Henry J. Y., Van Allen E. M., Miao D., Schilling B., Schadendorf D., Garraway L. A., Makarov V., Rizvi N. A., Snyder A., Hellmann M. D., Merghoub T., Wolchok J. D., Shukla S. A., Wu C. J., Peggs K. S., Chan T. A., Hadrup S. R., Quezada S. A., and Swanton C. (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 PubMed PMC
Rosenberg S. A., Yang J. C., Sherry R. M., Kammula U. S., Hughes M. S., Phan G. Q., Citrin D. E., Restifo N. P., Robbins P. F., Wunderlich J. R., Morton K. E., Laurencot C. M., Steinberg S. M., White D. E., and Dudley M. E. (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 PubMed PMC
Singhal R., Carrigan J. B., Wei W., Taniere P., Hejmadi R. K., Forde C., Ludwig C., Bunch J., Griffiths R. L., Johnson P. J., Tucker O., Alderson D., Günther U. L., and Ward D. G. (2013) MALDI profiles of proteins and lipids for the rapid characterisation of upper GI-tract cancers. J. Proteomics. 80, 207–215 PubMed
Geiger T., Velic A., Macek B., Lundberg E., Kampf C., Nagaraj N., Uhlen M., Cox J., and Mann M. (2013) Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol. Cell. Proteomics. 12, 1709–1722 PubMed PMC
Kim M. S., Pinto S. M., Getnet D., Nirujogi R. S., Manda S. S., Chaerkady R., Madugundu A. K., Kelkar D. S., Isserlin R., Jain S., Thomas J. K., Muthusamy B., Leal-Rojas P., Kumar P., Sahasrabuddhe N. A., Balakrishnan L., Advani J., George B., Renuse S., Selvan L. D., Patil A. H., Nanjappa V., Radhakrishnan A., Prasad S., Subbannayya T., Raju R., Kumar M., Sreenivasamurthy S. K., Marimuthu A., Sathe G. J., Chavan S., Datta K. K., Subbannayya Y., Sahu A., Yelamanchi S. D., Jayaram S., Rajagopalan P., Sharma J., Murthy K. R., Syed N., Goel R., Khan A. A., Ahmad S., Dey G., Mudgal K., Chatterjee A., Huang T. C., Zhong J., Wu X., Shaw P. G., Freed D., Zahari M. S., Mukherjee K. K., Shankar S., Mahadevan A., Lam H., Mitchell C. J., Shankar S. K., Satishchandra P., Schroeder J. T., Sirdeshmukh R., Maitra A., Leach S. D., Drake C. G., Halushka M. K., Prasad T. S., Hruban R. H., Kerr C. L., Bader G. D., Iacobuzio-Donahue C. A., Gowda H., and Pandey A. (2014) A draft map of the human proteome. Nature. 509, 575–581 PubMed PMC
O'Neill J. R., Stephens N. A., Save V., Kamel H. M., Phillips H. A., Driscoll P. J., and Paterson-Brown S. (2013) Defining a positive circumferential resection margin in oesophageal cancer and its implications for adjuvant treatment. Br. J. Surg. 100, 1055–1063 PubMed
Cai Z., Zhao J. S., Li J. J., Peng D. N., Wang X. Y., Chen T. L., Qiu Y. P., Chen P. P., Li W. J., Xu L. Y., Li E. M., Tam J. P., Qi R. Z., Jia W., and Xie D. (2010)A combined proteomics and metabolomics profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol. Cell. Proteomics. 9, 2617–2628. PubMed PMC
Besson D., Pavageau A.H., Valo I., Bourreau A., Bélanger A., Eymerit-Morin C., Moulière A., Chassevent A., Boisdron-Celle M., Morel A., Solassol J., Campone M., Gamelin E., Barré B., Coqueret O., and Guette C. (2011) A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Mol. Cell. Proteomics 10, M111.009712 PubMed PMC
Peng D., Sheta E. A., Powell S. M., Moskaluk C. A., Washington K., Goldknopf I. L., and El-Rifai W. (2008) Alterations in Barrett's-related adenocarcinomas: A proteomic approach. Int. J. Cancer 122, 1303–1310 PubMed
Zhao J., Chang A. C., Li C., Shedden K. A., Thomas D. G., Misek D. E., Manoharan A. P., Giordano T. J., Beer D. G., and Lubman D. M. (2007) Comparative proteomics analysis of Barrett metaplasia and esophageal adenocarcinoma using two-dimensional liquid mass mapping. Mol. Cell. Proteomics 6, 987–999 PubMed
Wiœniewski J.R., Zougman A., Nagaraj N., and Mann M. (2009) Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 PubMed
Dayon L., Turck N., Kienle S., Schulz-Knappe P., Hochstrasser D. F., Scherl A., and Sanchez J. C. (2010) Isobaric tagging-based selection and quantitation of cerebrospinal fluid tryptic peptides with reporter calibration curves. Anal. Chem. 82, 848–858 PubMed
Gluck F., Hoogland C., Antinori P., Robin X., Nikitin F., Zufferey A., Pasquarello C., Fétaud V., Dayon L., Müller M., Lisacek F., Geiser L., Hochstrasser D., Sanchez J.C., and Scherl A. (2013) EasyProt–an easy-to-use graphical platform for proteomics data analysis. J. Proteomics 79, 146–160 PubMed
Dayon L., Pasquarello C., Hoogland C., Sanchez J. C., and Scherl A. (2010) Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. J. Proteomics 73, 769–777 PubMed
Colinge J., Masselot A., Giron M., Dessingy T., and Magnin J. (2003) OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3, 1454–1463 PubMed
Vizcaíno J. A., Côté R.G., Csordas A., Dianes J.A., Fabregat A., Foster J.M., Griss J., Alpi E., Birim M., Contell J., O'Kelly. G, Schoenegger A., Ovelleiro D., Pérez-Riverol Y., Reisinger F., Ríos D., Wang R., and Hermjakob H. (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 PubMed PMC
Shaffer J. (1992) Caution on the use of variance ratio: A comment. Rev. Educational Res. 62, 429–432
Borenstein M. (2009) Introduction to meta-analysis. Chichester, U.K.: John Wiley & Sons
Ruxton G. (2006) The unequal variance t-test is an underused alternative to Student's t-test and the Mann-Whitney U test. Behavioural Ecol. 17, 688–690
Conover W., Johnson M., and Johnson M. (1981) A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23, 351–361
Welch B. (1947) The generalization of “Student's” problem when several different population variances are involved. Biometrika. 34, 28–35 PubMed
Benjamini Y., and Yekutieli D. (2001) The control of the false discovery rate in multiple testing under dependency. Ann. Statistics 29, 1165–1185
Murray E., Hernychová L., Scigelova M., Ho J., Nekulova M., O'Neill J. R., Nenutil R., Vesely K., Dundas S. R., Dhaliwal C., Henderson H., Hayward R. L., Salter D. M., Vojtìšek B., and Hupp T. R. (2014) Quantitative proteomic profiling of pleomorphic human sarcoma identifies CLIC1 as a dominant pro-oncogenic receptor expressed in diverse sarcoma types. J. Proteome Res. 13, 2543–2559 PubMed
Allred D. C., Harvey J. M., Berardo M., and Clark G. M. (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod. Pathol. 11, 155–168 PubMed
Huart A. S., MacLaine N. J., Meek D. W., and Hupp T. R. (2009) CK1alpha plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J. Biol. Chem. 284, 32384–32394 PubMed PMC
Freeman T. C., Ivens A., Baillie J. K., Beraldi D., Barnett M. W., Dorward D., Downing A., Fairbairn L., Kapetanovic R., Raza S., Tomoiu A., Alberio R., Wu C., Su A. I., Summers K. M., Tuggle C. K., Archibald A. L., and Hume D. A. (2012) A gene expression atlas of the domestic pig. BMC Biol. 10, 90. PubMed PMC
Goebel M., Stengel A., Lambrecht N. W., and Sachs G. (2011) Selective gene expression by rat gastric corpus epithelium. Physiol. Genomics 43, 237–254 PubMed PMC
Takashima M., Kawachi H., Yamaguchi T., Nakajima Y., Kitagaki K., Sekine M., Iida T., Takemura K., Kawano T., and Eishi Y. (2012) Reduced expression of cytokeratin 4 and 13 is a valuable marker for histologic grading of esophageal squamous intraepithelial neoplasia. J. Med. Dent. Sci. 59, 17–28 PubMed
Wang X., Ouyang H., Yamamoto Y., Kumar P.A., Wei T.S., Dagher R., Vincent M., Lu X., Bellizzi A.M., Ho K.Y., Crum C.P., Xian W., and McKeon F. (2011) Residual embryonic cells as precursors of a Barrett's-like metaplasia. Cell 145, 1023–1035 PubMed PMC
Ramos-Vara J. A. (2011) Principles and methods of immunohistochemistry. Methods Mol. Biol. 691, 83–96 PubMed
Soldes O. S., Kuick R. D., Thompson I. A., Hughes S. J., Orringer M. B., Iannettoni M. D., Hanash S. M., and Beer D. G. (1999) Differential expression of Hsp27 in normal oesophagus, Barrett's metaplasia and oesophageal adenocarcinomas. Br. J. Cancer 79, 595–603 PubMed PMC
Pohler E., Craig A. L., Cotton J., Lawrie L., Dillon J. F., Ross P., Kernohan N., and Hupp T. R. (2004) Mol. Cell. Proteomics 3, 534–547 PubMed
Pizzi M, Fassan M, Realdon S, Balistreri M, Battaglia G, Giacometti C, Zaninotto G, Zagonel V, De Boni M, and Rugge M. (2012) Anterior gradient 2 profiling in Barrett columnar epithelia and adenocarcinoma. Hum. Pathol. 43, 1839–1844 PubMed
Thompson D. A., and Weigel R. J. (1998) hAG-2, the human homologue of the Xenopus laevis cement gland gene XAG-2, is coexpressed with estrogen receptor in breast cancer cell lines. Biochem. Biophys. Res. Commun. 251, 111–116 PubMed
Uhlén M., Björling E., Agaton C., Szigyarto C. A., Amini B., Andersen E., Andersson A. C., Angelidou P., Asplund A., Asplund C., Berglund L., Bergström K., Brumer H., Cerjan D., Ekström M., Elobeid A., Eriksson C., Fagerberg L., Falk R., Fall J., Forsberg M., Björklund M. G., Gumbel K., Halimi A., Hallin I., Hamsten C., Hansson M., Hedhammar M., Hercules G., Kampf C., Larsson K., Lindskog M., Lodewyckx W., Lund J., Lundeberg J., Magnusson K., Malm E., Nilsson P., Odling J., Oksvold P., Olsson I., Oster E., Ottosson J., Paavilainen L., Persson A., Rimini R., Rockberg J., Runeson M., Sivertsson A., Sköllermo A., Steen J., Stenvall M., Sterky F., Strömberg S., Sundberg M., Tegel H., Tourle S., Wahlund E., Waldén A., Wan J., Wernérus H., Westberg J., Wester K., Wrethagen U., Xu L. L., Hober S., and Pontén F. (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteomics 4, 1920–1932 PubMed
Langer R., Feith M., Siewert J. R., Wester H. J., and Hoefler H. (2008) Expression and clinical significance of glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus. BMC Cancer 8, 70. PubMed PMC
Hetz C. (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 PubMed
Chevet E., Fessart D., Delom F., Mulot A., Vojtesek B., Hrstka R., Murray E., Gray T., and Hupp T. (2013) Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development. Oncogene 32, 2499–2509 PubMed
Baldauf H. M., Pan X., Erikson E., Schmidt S., Daddacha W., Burggraf M., Schenkova K., Ambiel I., Wabnitz G., Gramberg T., Panitz S., Flory E., Landau N. R., Sertel S., Rutsch F, Lasitschka F., Kim B., König R., Fackler O. T, and Keppler O. T. (2012) SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat. Med. 18, 1682–1687 PubMed PMC
Scherle P., Behrens T., and Staudt L. M. (1993) Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc. Natl. Acad. Sci. U S A 90, 7568–7572 PubMed PMC
Moissoglu K., McRoberts K. S., Meier J. A., Theodorescu D., and Schwartz M. A. (2009) Rho,GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Res. 69, 2838–2844 PubMed PMC
Cho H. J., Baek K. E., Park S. M., Kim I. K., Choi Y. L., Cho H. J., Nam I. K., Hwang E. M., Park J. Y., Han J. Y., Kang S. S., Kim D. C., Lee W. S., Lee M. N., Oh G. T., Kim J. W., Lee C. W., and Yoo J. (2009) RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer. Clin. Cancer Res. 15, 2612–2619 PubMed
Went P. T., Lugli A., Meier S., Bundi M., Mirlacher M., Sauter G., and Dirnhofer S. (2004) Frequent EpCam protein expression in human carcinomas. Hum. Pathol. 35, 122–128 PubMed
Kimura H., Kato H., Faried A., Sohda M., Nakajima M., Fukai Y., Miyazaki T., Masuda N., Fukuchi M., and Kuwano H. (2007) Prognostic significance of EpCAM expression in human esophageal cancer. Int. J. Oncol. 30, 171–179 PubMed
Maetzel D., Denzel S., Mack B., Canis M., Went P., Benk M., Kieu C., Papior P., Baeuerle P.A., Munz M., and Gires O. (2009) Nuclear signalling by tumour-associated antigen EpCAM. Nat. Cell Biol. 11, 162–171 PubMed
Rao C. G., Chianese D., Doyle G. V., Miller M. C., Russell T., Sanders R. A. Jr, and Terstappen L. W. (2005) Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int. J. Oncol. 27, 49–57 PubMed
Thorek D. L., Ulmert D., Diop N. F., Lupu M. E., Doran M. G., Huang R., Abou D. S., Larson S. M., and Grimm J. (2014) Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat. Commun. 5, 3097. PubMed PMC
Driemel C., Kremling H., Schumacher S., Will D., Wolters J., Lindenlauf N., Mack B., Baldus S. A., Hoya V., Pietsch J. M., Panagiotidou P., Raba K., Vay C., Vallböhmer D., Harréus U., Knoefel W. T., Stoecklein N. H., and Gires O. (2014) Context-dependent adaption of EpCAM expression in early systemic esophageal cancer. Oncogene 33, 4904–4915 PubMed
Zhang B., Wang J., Wang X., Zhu J., Liu. Q., Shi Z., Chambers M. C., Zimmerman L. J., Shaddox K. F., Kim S., Davies S. R., Wang S., Wang P., Kinsinger C. R., Rivers R. C., Rodriguez H., Townsend R. R., Ellis M. J., Carr S. A., Tabb D. L., Coffey R. J., Slebos R. J., Liebler D. C., and NCI CPTAC (2014) Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 PubMed PMC
Blakeley P., Overton I. M., and Hubbard S. J. (2012) Addressing statistical biases in nucleotide-derived protein databases for proteogenomic search strategies. J. Proteome Res. 11, 5221–5234 PubMed PMC
Seimetz D., Lindhofer H., and Bokemeyer C. (2010) Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev. 36, 458–467 PubMed
Sakamoto J., Oriuchi N., Mochiki E., Asao T., Scott A. M., Hoffman E. W., Jungbluth A. A., Matsui T., Lee F. T., Papenfuss A., Kuwano H., Takahashi T., Endo K., and Old L. J. (2006) A phase I radioimmunolocalization trial of humanized monoclonal antibody huA33 in patients with gastric carcinoma. Cancer Sci. 97, 1248–1254 PubMed PMC
Chong G., Lee F. T., Hopkins W., Tebbutt N., Cebon J. S., Mountain A. J., Chappell B., Papenfuss A., Schleyer P., U P, Murphy R., Wirth V., Smyth F. E., Potasz N., Poon A., Davis I. D., Saunder T., O'keefe G. J., Burgess A. W., Hoffman E. W., Old L. J., and Scott A. M. (2005) Phase I trial of 131I-huA33 in patients with advanced colorectal carcinoma. Clin. Cancer Res. 11, 4818–4826 PubMed
Quoix E., Lena H., Losonczy G., Forget F., Chouaid C., Papai Z., Gervais R., Ottensmeier C., Szczesna A., Kazarnowicz A., Beck J. T., Westeel V., Felip E., Debieuvre D., Madroszyk A., Adam J., Lacoste G., Tavernaro A., Bastien B., Halluard C., Palanché T., and Limacher J. M. (2016) TG4010 immunotherapy and first-line chemotherapy for advanced non-small-cell lung cancer (TIME): results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial. Lancet Oncol. 17, 212–223. PubMed
Vansteenkiste J., Zielinski M., Linder A., Dahabreh J., Gonzalez E. E., Malinowski W., Lopez-Brea M., Vanakesa T., Jassem J., Kalofonos H., Perdeus J., Bonnet R., Basko J., Janilionis R., Passlick B., Treasure T., Gillet M., Lehmann F. F., and Brichard V. G. (2013) Adjuvant MAGE-A3 Immunotherapy in Resected Non-Small-Cell Lung Cancer: Phase II Randomized Study Results. J. Clin. Oncol. 31, 2396–2403 PubMed
Yoo C., Zhao J., Pal M., Hersberger K., Huber C. G., Simeone D. M., Beer D. G., and Lubman D. M. (2006) Automated integration of monolith-based protein separation with on-plate digestion for mass spectrometric analysis of esophageal adenocarcinoma human epithelial samples. Electrophoresis 27, 3643–3651 PubMed
Langer R., Ott K., Specht K., Becker K., Lordick F., Burian M., Herrmann K., Schrattenholz A., Cahill M. A., Schwaiger M., Hofler H., and Wester H. J. (2008) Protein expression profiling in esophageal adenocarcinoma patients indicates association of heat-shock protein 27 expression and chemotherapy response. Clin. Cancer Res. 14, 8279–8287 PubMed
Quaas A., Baha A.S., von Loga K., Seddiqi A.S., Singer J.M., Omidi M., Kraus O., Kwiatkowski M., Trusch M., Minner S., Burandt E., Stahl P., Wilczak W., Wurlitzer M., Simon R., Sauter G., Marx A., and Schlüter H. (2013) MALDI imaging on large-scale tissue microarrays identifies molecular features associated with tumour phenotype in oesophageal cancer. Histopathology 63, 455–462 PubMed
Aichler M., Elsner M., Ludyga N., Feuchtinger A., Zangen V., Maier S.K., Balluff B., Schöne C., Hierber L., Braselmann H., Meding S., Rauser S., Zischka H., Aubele M., Schmitt M., Feith M., Hauck S. M., Ueffing M., Langer R., Kuster B., Zitzelsberger H., Höfler H., and Walch A. K. (2013) Clinical response to chemotherapy in oesophageal adenocarcinoma patients is linked to defects in mitochondria. J. Pathol. 230, 410–419 PubMed
Elsner M., Rauser S., Maier S., Schöne C., Balluff B., Meding S., Jung G., Nipp M., Sarioglu H., Maccarrone G., Aichler M., Feuchtinger A., Langer R., Jütting U., Feith M., Küster B., Ueffing M., Zitzelsberger H., Höfler H., and Walch A. (2012) MALDI imaging mass spectrometry reveals COX7A2, TAGLN2 and S100-A10 as novel prognostic markers in Barrett's adenocarcinoma. J. Proteomics 75, 4693–4704 PubMed
Streitz J. M., Madden M. T., Marimanikkuppam S. S., Krick T. P., Salo W. L., and Aufderheide A. C. (2005) Analysis of protein expression patterns in Barrett's esophagus using MALDI mass spectrometry, in search of malignancy biomarkers. Dis. Esophagus 18, 170–176 PubMed