An Ultrasensitive Biosensor for Detection of Femtogram Levels of the Cancer Antigen AGR2 Using Monoclonal Antibody Modified Screen-Printed Gold Electrodes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34200338
PubMed Central
PMC8230265
DOI
10.3390/bios11060184
PII: bios11060184
Knihovny.cz E-zdroje
- Klíčová slova
- AGR2 protein, electrochemical impedance spectroscopy, screen-printed gold electrode, sensor,
- MeSH
- biosenzitivní techniky * MeSH
- elektrochemické techniky MeSH
- elektrody MeSH
- kovové nanočástice MeSH
- lidé MeSH
- limita detekce MeSH
- monoklonální protilátky MeSH
- mukoproteiny analýza MeSH
- nádory MeSH
- onkogenní proteiny analýza MeSH
- zlato MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AGR2 protein, human MeSH Prohlížeč
- monoklonální protilátky MeSH
- mukoproteiny MeSH
- onkogenní proteiny MeSH
- zlato MeSH
The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.
Institute of Biotechnology and Molecular Medicine 3 Trzy Lipy St 80 172 Gdansk Poland
Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh EH4 2XR UK
Zobrazit více v PubMed
Aberger F., Weidinger G., Grunz H., Richter K. Anterior Specification of Embryonic Ectoderm: The Role of the Xenopus Cement Gland-Specific Gene XAG-2. Mech. Dev. 1998;72:115–130. doi: 10.1016/S0925-4773(98)00021-5. PubMed DOI
Thompson D.A., Weigel R.J. HAG-2, the Human Homologue of TheXenopus LaevisCement Gland Gene XAG-2, Is Coexpressed with Estrogen Receptor in Breast Cancer Cell Lines. Biochem. Biophys. Res. Commun. 1998;251:111–116. doi: 10.1006/bbrc.1998.9440. PubMed DOI
Persson S., Rosenquist M., Knoblach B., Khosravi-Far R., Sommarin M., Michalak M. Diversity of the Protein Disulfide Isomerase Family: Identification of Breast Tumor Induced Hag2 and Hag3 as Novel Members of the Protein Family. Mol. Phylogenet. Evol. 2005;36:734–740. doi: 10.1016/j.ympev.2005.04.002. PubMed DOI
Brychtova V., Mohtar A., Vojtesek B., Hupp T.R. Mechanisms of Anterior Gradient-2 Regulation and Function in Cancer. Semin. Cancer Biol. 2015;33:16–24. doi: 10.1016/j.semcancer.2015.04.005. PubMed DOI
Tian S., Tao K., Hu J., Liu Z., Ding X., Chu Y., Cui J., Shuai X., Gao J., Cai K., et al. The Prognostic Value of AGR2 Expression in Solid Tumours: A Systematic Review and Meta-Analysis. Sci. Rep. 2017;7:15500. doi: 10.1038/s41598-017-15757-z. PubMed DOI PMC
Sive H.L., Hattori K., Weintraub H. Progressive Determination during Formation of the Anteroposterior Axis in Xenopus Laevis. Cell. 1989;58:171–180. doi: 10.1016/0092-8674(89)90413-3. PubMed DOI
Patel P., Clarke C., Barraclough D.L., Jowitt T.A., Rudland P.S., Barraclough R., Lian L.-Y. Metastasis-Promoting Anterior Gradient 2 Protein Has a Dimeric Thioredoxin Fold Structure and a Role in Cell Adhesion. J. Mol. Biol. 2013;425:929–943. doi: 10.1016/j.jmb.2012.12.009. PubMed DOI
Kumar A., Godwin J.W., Gates P.B., Garza-Garcia A.A., Brockes J.P. Molecular Basis for the Nerve Dependence of Limb Regeneration in an Adult Vertebrate. Science. 2007;318:772–777. doi: 10.1126/science.1147710. PubMed DOI PMC
Di Valentin E., Crahay C., Garbacki N., Hennuy B., Guéders M., Noël A., Foidart J.-M., Grooten J., Colige A., Piette J., et al. New Asthma Biomarkers: Lessons from Murine Models of Acute and Chronic Asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 2009;296:L185–L197. doi: 10.1152/ajplung.90367.2008. PubMed DOI
Maurel M., Obacz J., Avril T., Ding Y.-P., Papadodima O., Treton X., Daniel F., Pilalis E., Hörberg J., Hou W., et al. Control of Anterior GRadient 2 (AGR2) Dimerization Links Endoplasmic Reticulum Proteostasis to Inflammation. EMBO Mol. Med. 2019;11 doi: 10.15252/emmm.201810120. PubMed DOI PMC
Fritzsche F.R., Dahl E., Pahl S., Burkhardt M., Luo J., Mayordomo E., Gansukh T., Dankof A., Knuechel R., Denkert C., et al. Prognostic Relevance of AGR2 Expression in Breast Cancer. Clin. Cancer Res. 2006;12:1728–1734. doi: 10.1158/1078-0432.CCR-05-2057. PubMed DOI
Chanda D., Lee J.H., Sawant A., Hensel J.A., Isayeva T., Reilly S.D., Siegal G.P., Smith C., Grizzle W., Singh R., et al. Anterior Gradient Protein-2 Is a Regulator of Cellular Adhesion in Prostate Cancer. PLoS ONE. 2014;9:e89940. doi: 10.1371/journal.pone.0089940. PubMed DOI PMC
Dumartin L., Alrawashdeh W., Trabulo S.M., Radon T.P., Steiger K., Feakins R.M., di Magliano M.P., Heeschen C., Esposito I., Lemoine N.R., et al. ER Stress Protein AGR2 Precedes and Is Involved in the Regulation of Pancreatic Cancer Initiation. Oncogene. 2017;36:3094–3103. doi: 10.1038/onc.2016.459. PubMed DOI PMC
Lepreux S., Bioulac-Sage P., Chevet E. Differential Expression of the Anterior Gradient Protein-2 Is a Conserved Feature during Morphogenesis and Carcinogenesis of the Biliary Tree. Liver Int. 2011;31:322–328. doi: 10.1111/j.1478-3231.2010.02438.x. PubMed DOI
Gray T.A., MacLaine N.J., Michie C.O., Bouchalova P., Murray E., Howie J., Hrstka R., Maslon M.M., Nenutil R., Vojtesek B., et al. Anterior Gradient-3: A Novel Biomarker for Ovarian Cancer That Mediates Cisplatin Resistance in Xenograft Models. J. Immunol. Methods. 2012;378:20–32. doi: 10.1016/j.jim.2012.01.013. PubMed DOI
Pohler E., Craig A.L., Cotton J., Lawrie L., Dillon J.F., Ross P., Kernohan N., Hupp T.R. The Barrett’s Antigen Anterior Gradient-2 Silences the P53 Transcriptional Response to DNA Damage. Mol. Cell Proteom. 2004;3:534–547. doi: 10.1074/mcp.M300089-MCP200. PubMed DOI
O’Neill J.R., Pak H.-S., Pairo-Castineira E., Save V., Paterson-Brown S., Nenutil R., Vojtěšek B., Overton I., Scherl A., Hupp T.R. Quantitative Shotgun Proteomics Unveils Candidate Novel Esophageal Adenocarcinoma (EAC)-Specific Proteins. Mol. Cell Proteom. 2017;16:1138–1150. doi: 10.1074/mcp.M116.065078. PubMed DOI PMC
Mohtar M.A., Hernychova L., O’Neill J.R., Lawrence M.L., Murray E., Vojtesek B., Hupp T.R. The Sequence-Specific Peptide-Binding Activity of the Protein Sulfide Isomerase AGR2 Directs Its Stable Binding to the Oncogenic Receptor EpCAM. Mol. Cell Proteom. 2018;17:737–763. doi: 10.1074/mcp.RA118.000573. PubMed DOI PMC
Shriwash N., Singh P., Arora S., Ali S.M., Ali S., Dohare R. Identification of Differentially Expressed Genes in Small and Non-Small Cell Lung Cancer Based on Meta-Analysis of MRNA. Heliyon. 2019;5:e01707. doi: 10.1016/j.heliyon.2019.e01707. PubMed DOI PMC
Fessart D., Domblides C., Avril T., Eriksson L.A., Begueret H., Pineau R., Malrieux C., Dugot-Senant N., Lucchesi C., Chevet E., et al. Secretion of Protein Disulphide Isomerase AGR2 Confers Tumorigenic Properties. Elife. 2016;5:e13887. doi: 10.7554/eLife.13887. PubMed DOI PMC
Obacz J., Sommerova L., Sicari D., Durech M., Avril T., Iuliano F., Pastorekova S., Hrstka R., Chevet E., Delom F., et al. Extracellular AGR3 Regulates Breast Cancer Cells Migration via Src Signaling. Oncol. Lett. 2019;18:4449–4456. doi: 10.3892/ol.2019.10849. PubMed DOI PMC
Ho M.E., Quek S.-I., True L.D., Seiler R., Fleischmann A., Bagryanova L., Kim S.R., Chia D., Goodglick L., Shimizu Y., et al. Bladder Cancer Cells Secrete While Normal Bladder Cells Express but Do Not Secrete AGR2. Oncotarget. 2016;7:15747–15756. doi: 10.18632/oncotarget.7400. PubMed DOI PMC
Shi T., Gao Y., Quek S.I., Fillmore T.L., Nicora C.D., Su D., Zhao R., Kagan J., Srivastava S., Rodland K.D., et al. A Highly Sensitive Targeted Mass Spectrometric Assay for Quantification of AGR2 Protein in Human Urine and Serum. J. Proteome Res. 2014;13:875–882. doi: 10.1021/pr400912c. PubMed DOI PMC
Wayner E.A., Quek S.-I., Ahmad R., Ho M.E., Loprieno M.A., Zhou Y., Ellis W.J., True L.D., Liu A.Y. Development of an ELISA to Detect the Secreted Prostate Cancer Biomarker AGR2 in Voided Urine. Prostate. 2012;72:1023–1034. doi: 10.1002/pros.21508. PubMed DOI
Kani K., Malihi P.D., Jiang Y., Wang H., Wang Y., Ruderman D.L., Agus D.B., Mallick P., Gross M.E. Anterior Gradient 2 (AGR2): Blood-Based Biomarker Elevated in Metastatic Prostate Cancer Associated with the Neuroendocrine Phenotype. Prostate. 2013;73:306–315. doi: 10.1002/pros.22569. PubMed DOI
Edgell T.A., Barraclough D.L., Rajic A., Dhulia J., Lewis K.J., Armes J.E., Barraclough R., Rudland P.S., Rice G.E., Autelitano D.J. Increased Plasma Concentrations of Anterior Gradient 2 Protein Are Positively Associated with Ovarian Cancer. Clin. Sci. (Lond.) 2010;118:717–725. doi: 10.1042/CS20090537. PubMed DOI
Liu A.Y., Kanan A.D., Radon T.P., Shah S., Weeks M.E., Foster J.M., Sosabowski J.K., Dumartin L., Crnogorac-Jurcevic T. AGR2, a Unique Tumor-Associated Antigen, Is a Promising Candidate for Antibody Targeting. Oncotarget. 2019;10:4276–4289. doi: 10.18632/oncotarget.26945. PubMed DOI PMC
Negi H., Merugu S.B., Mangukiya H.B., Li Z., Zhou B., Sehar Q., Kamle S., Yunus F.-U.-N., Mashausi D.S., Wu Z., et al. Anterior Gradient-2 Monoclonal Antibody Inhibits Lung Cancer Growth and Metastasis by Upregulating P53 Pathway and without Exerting Any Toxicological Effects: A Preclinical Study. Cancer Lett. 2019;449:125–134. doi: 10.1016/j.canlet.2019.01.025. PubMed DOI
Garri C., Howell S., Tiemann K., Tiffany A., Jalali-Yazdi F., Alba M.M., Katz J.E., Takahashi T.T., Landgraf R., Gross M.E., et al. Identification, Characterization and Application of a New Peptide against Anterior Gradient Homolog 2 (AGR2) Oncotarget. 2018;9:27363–27379. doi: 10.18632/oncotarget.25221. PubMed DOI PMC
Murray E., McKenna E.O., Burch L.R., Dillon J., Langridge-Smith P., Kolch W., Pitt A., Hupp T.R. Microarray-Formatted Clinical Biomarker Assay Development Using Peptide Aptamers to Anterior Gradient-2. Biochemistry. 2007;46:13742–13751. doi: 10.1021/bi7008739. PubMed DOI
Gray T.A., Murray E., Nowicki M.W., Remnant L., Scherl A., Muller P., Vojtesek B., Hupp T.R. Development of a Fluorescent Monoclonal Antibody-Based Assay to Measure the Allosteric Effects of Synthetic Peptides on Self-Oligomerization of AGR2 Protein. Protein Sci. 2013;22:1266–1278. doi: 10.1002/pro.2299. PubMed DOI PMC
Nidzworski D., Siuzdak K., Niedziałkowski P., Bogdanowicz R., Sobaszek M., Ryl J., Weiher P., Sawczak M., Wnuk E., Goddard W.A., et al. A Rapid-Response Ultrasensitive Biosensor for Influenza Virus Detection Using Antibody Modified Boron-Doped Diamond. Sci. Rep. 2017;7:15707. doi: 10.1038/s41598-017-15806-7. PubMed DOI PMC
Malinowska N., Białobrzeska W., Łęga T., Pałka K., Dziąbowska K., Żołędowska S., Czaczyk E., Pala K., Nidzworski D. Antibody Modified Gold Electrode as an Impedimetric Biosensor for the Detection of Streptococcus Pyogenes. Sensors. 2020;20:5324. doi: 10.3390/s20185324. PubMed DOI PMC
Gray T., Alsamman K., Murray E., Sims A., Hupp T. Engineering a Synthetic Cell Panel to Identify Signalling Components Reprogrammed by the Cell Growth Regulator Anterior Gradient-2. Mol. Biosyst. 2014;10 doi: 10.1039/C4MB00113C. PubMed DOI
Randles J.E.B. Kinetics of Rapid Electrode Reactions. Discuss. Faraday Soc. 1947;1:11–19. doi: 10.1039/df9470100011. DOI
Białobrzeska W., Firganek D., Czerkies M., Lipniacki T., Skwarecka M., Dziąbowska K., Cebula Z., Malinowska N., Bigus D., Bięga E., et al. Electrochemical Immunosensors Based on Screen-Printed Gold and Glassy Carbon Electrodes: Comparison of Performance for Respiratory Syncytial Virus Detection. Biosensors. 2020;10:175. doi: 10.3390/bios10110175. PubMed DOI PMC
Cebula Z., Żołędowska S., Dziąbowska K., Skwarecka M., Malinowska N., Białobrzeska W., Czaczyk E., Siuzdak K., Sawczak M., Bogdanowicz R., et al. Detection of the Plant Pathogen Pseudomonas Syringae Pv. Lachrymans on Antibody-Modified Gold Electrodes by Electrochemical Impedance Spectroscopy. Sensors. 2019;19:5411. doi: 10.3390/s19245411. PubMed DOI PMC
Niedzialkowski P., Slepski P., Wysocka J., Chamier-Cieminska J., Burczyk L., Sobaszek M., Wcislo A., Ossowski T., Bogdanowicz R., Ryl J. Multisine Impedimetric Probing of Biocatalytic Reactions for Label-Free Detection of DEFB1 Gene: How to Verify That Your Dog Is Not Human? Sens. Actuators B Chem. 2020;323:128664. doi: 10.1016/j.snb.2020.128664. DOI
Augustine S., Kumar P., Malhotra B.D. Amine-Functionalized MoO3@RGO Nanohybrid-Based Biosensor for Breast Cancer Detection. ACS Appl. Biol. Mater. 2019;2:5366–5378. doi: 10.1021/acsabm.9b00659. PubMed DOI
Gajdosova V., Lorencova L., Kasak P., Tkac J. Electrochemical Nanobiosensors for Detection of Breast Cancer Biomarkers. Sensors. 2020;20:4022. doi: 10.3390/s20144022. PubMed DOI PMC
Roberts A., Tripathi P.P., Gandhi S. Graphene Nanosheets as an Electric Mediator for Ultrafast Sensing of Urokinase Plasminogen Activator Receptor-A Biomarker of Cancer. Biosens. Bioelectron. 2019;141:111398. doi: 10.1016/j.bios.2019.111398. PubMed DOI
Negahdary M. Aptamers in Nanostructure-Based Electrochemical Biosensors for Cardiac Biomarkers and Cancer Biomarkers: A Review. Biosens. Bioelectron. 2020;152:112018. doi: 10.1016/j.bios.2020.112018. PubMed DOI
Kilic T., Valinhas A.T.D.S., Wall I., Renaud P., Carrara S. Label-Free Detection of Hypoxia-Induced Extracellular Vesicle Secretion from MCF-7 Cells. Sci. Rep. 2018;8:9402. doi: 10.1038/s41598-018-27203-9. PubMed DOI PMC
Nawaz M.A.H., Rauf S., Catanante G., Nawaz M.H., Nunes G., Marty J.L., Hayat A. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker. Sensors. 2016;16:1651. doi: 10.3390/s16101651. PubMed DOI PMC
Luo L., Wang L., Zeng L., Wang Y., Weng Y., Liao Y., Chen T., Xia Y., Zhang J., Chen J. A Ratiometric Electrochemical DNA Biosensor for Detection of Exosomal MicroRNA. Talanta. 2020;207:120298. doi: 10.1016/j.talanta.2019.120298. PubMed DOI
Tang Y., Dai Y., Huang X., Li L., Han B., Cao Y., Zhao J. Self-Assembling Peptide-Based Multifunctional Nanofibers for Electrochemical Identification of Breast Cancer Stem-like Cells. Anal. Chem. 2019;91:7531–7537. doi: 10.1021/acs.analchem.8b05359. PubMed DOI