An Ultrasensitive Biosensor for Detection of Femtogram Levels of the Cancer Antigen AGR2 Using Monoclonal Antibody Modified Screen-Printed Gold Electrodes

. 2021 Jun 07 ; 11 (6) : . [epub] 20210607

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34200338

The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.

Zobrazit více v PubMed

Aberger F., Weidinger G., Grunz H., Richter K. Anterior Specification of Embryonic Ectoderm: The Role of the Xenopus Cement Gland-Specific Gene XAG-2. Mech. Dev. 1998;72:115–130. doi: 10.1016/S0925-4773(98)00021-5. PubMed DOI

Thompson D.A., Weigel R.J. HAG-2, the Human Homologue of TheXenopus LaevisCement Gland Gene XAG-2, Is Coexpressed with Estrogen Receptor in Breast Cancer Cell Lines. Biochem. Biophys. Res. Commun. 1998;251:111–116. doi: 10.1006/bbrc.1998.9440. PubMed DOI

Persson S., Rosenquist M., Knoblach B., Khosravi-Far R., Sommarin M., Michalak M. Diversity of the Protein Disulfide Isomerase Family: Identification of Breast Tumor Induced Hag2 and Hag3 as Novel Members of the Protein Family. Mol. Phylogenet. Evol. 2005;36:734–740. doi: 10.1016/j.ympev.2005.04.002. PubMed DOI

Brychtova V., Mohtar A., Vojtesek B., Hupp T.R. Mechanisms of Anterior Gradient-2 Regulation and Function in Cancer. Semin. Cancer Biol. 2015;33:16–24. doi: 10.1016/j.semcancer.2015.04.005. PubMed DOI

Tian S., Tao K., Hu J., Liu Z., Ding X., Chu Y., Cui J., Shuai X., Gao J., Cai K., et al. The Prognostic Value of AGR2 Expression in Solid Tumours: A Systematic Review and Meta-Analysis. Sci. Rep. 2017;7:15500. doi: 10.1038/s41598-017-15757-z. PubMed DOI PMC

Sive H.L., Hattori K., Weintraub H. Progressive Determination during Formation of the Anteroposterior Axis in Xenopus Laevis. Cell. 1989;58:171–180. doi: 10.1016/0092-8674(89)90413-3. PubMed DOI

Patel P., Clarke C., Barraclough D.L., Jowitt T.A., Rudland P.S., Barraclough R., Lian L.-Y. Metastasis-Promoting Anterior Gradient 2 Protein Has a Dimeric Thioredoxin Fold Structure and a Role in Cell Adhesion. J. Mol. Biol. 2013;425:929–943. doi: 10.1016/j.jmb.2012.12.009. PubMed DOI

Kumar A., Godwin J.W., Gates P.B., Garza-Garcia A.A., Brockes J.P. Molecular Basis for the Nerve Dependence of Limb Regeneration in an Adult Vertebrate. Science. 2007;318:772–777. doi: 10.1126/science.1147710. PubMed DOI PMC

Di Valentin E., Crahay C., Garbacki N., Hennuy B., Guéders M., Noël A., Foidart J.-M., Grooten J., Colige A., Piette J., et al. New Asthma Biomarkers: Lessons from Murine Models of Acute and Chronic Asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 2009;296:L185–L197. doi: 10.1152/ajplung.90367.2008. PubMed DOI

Maurel M., Obacz J., Avril T., Ding Y.-P., Papadodima O., Treton X., Daniel F., Pilalis E., Hörberg J., Hou W., et al. Control of Anterior GRadient 2 (AGR2) Dimerization Links Endoplasmic Reticulum Proteostasis to Inflammation. EMBO Mol. Med. 2019;11 doi: 10.15252/emmm.201810120. PubMed DOI PMC

Fritzsche F.R., Dahl E., Pahl S., Burkhardt M., Luo J., Mayordomo E., Gansukh T., Dankof A., Knuechel R., Denkert C., et al. Prognostic Relevance of AGR2 Expression in Breast Cancer. Clin. Cancer Res. 2006;12:1728–1734. doi: 10.1158/1078-0432.CCR-05-2057. PubMed DOI

Chanda D., Lee J.H., Sawant A., Hensel J.A., Isayeva T., Reilly S.D., Siegal G.P., Smith C., Grizzle W., Singh R., et al. Anterior Gradient Protein-2 Is a Regulator of Cellular Adhesion in Prostate Cancer. PLoS ONE. 2014;9:e89940. doi: 10.1371/journal.pone.0089940. PubMed DOI PMC

Dumartin L., Alrawashdeh W., Trabulo S.M., Radon T.P., Steiger K., Feakins R.M., di Magliano M.P., Heeschen C., Esposito I., Lemoine N.R., et al. ER Stress Protein AGR2 Precedes and Is Involved in the Regulation of Pancreatic Cancer Initiation. Oncogene. 2017;36:3094–3103. doi: 10.1038/onc.2016.459. PubMed DOI PMC

Lepreux S., Bioulac-Sage P., Chevet E. Differential Expression of the Anterior Gradient Protein-2 Is a Conserved Feature during Morphogenesis and Carcinogenesis of the Biliary Tree. Liver Int. 2011;31:322–328. doi: 10.1111/j.1478-3231.2010.02438.x. PubMed DOI

Gray T.A., MacLaine N.J., Michie C.O., Bouchalova P., Murray E., Howie J., Hrstka R., Maslon M.M., Nenutil R., Vojtesek B., et al. Anterior Gradient-3: A Novel Biomarker for Ovarian Cancer That Mediates Cisplatin Resistance in Xenograft Models. J. Immunol. Methods. 2012;378:20–32. doi: 10.1016/j.jim.2012.01.013. PubMed DOI

Pohler E., Craig A.L., Cotton J., Lawrie L., Dillon J.F., Ross P., Kernohan N., Hupp T.R. The Barrett’s Antigen Anterior Gradient-2 Silences the P53 Transcriptional Response to DNA Damage. Mol. Cell Proteom. 2004;3:534–547. doi: 10.1074/mcp.M300089-MCP200. PubMed DOI

O’Neill J.R., Pak H.-S., Pairo-Castineira E., Save V., Paterson-Brown S., Nenutil R., Vojtěšek B., Overton I., Scherl A., Hupp T.R. Quantitative Shotgun Proteomics Unveils Candidate Novel Esophageal Adenocarcinoma (EAC)-Specific Proteins. Mol. Cell Proteom. 2017;16:1138–1150. doi: 10.1074/mcp.M116.065078. PubMed DOI PMC

Mohtar M.A., Hernychova L., O’Neill J.R., Lawrence M.L., Murray E., Vojtesek B., Hupp T.R. The Sequence-Specific Peptide-Binding Activity of the Protein Sulfide Isomerase AGR2 Directs Its Stable Binding to the Oncogenic Receptor EpCAM. Mol. Cell Proteom. 2018;17:737–763. doi: 10.1074/mcp.RA118.000573. PubMed DOI PMC

Shriwash N., Singh P., Arora S., Ali S.M., Ali S., Dohare R. Identification of Differentially Expressed Genes in Small and Non-Small Cell Lung Cancer Based on Meta-Analysis of MRNA. Heliyon. 2019;5:e01707. doi: 10.1016/j.heliyon.2019.e01707. PubMed DOI PMC

Fessart D., Domblides C., Avril T., Eriksson L.A., Begueret H., Pineau R., Malrieux C., Dugot-Senant N., Lucchesi C., Chevet E., et al. Secretion of Protein Disulphide Isomerase AGR2 Confers Tumorigenic Properties. Elife. 2016;5:e13887. doi: 10.7554/eLife.13887. PubMed DOI PMC

Obacz J., Sommerova L., Sicari D., Durech M., Avril T., Iuliano F., Pastorekova S., Hrstka R., Chevet E., Delom F., et al. Extracellular AGR3 Regulates Breast Cancer Cells Migration via Src Signaling. Oncol. Lett. 2019;18:4449–4456. doi: 10.3892/ol.2019.10849. PubMed DOI PMC

Ho M.E., Quek S.-I., True L.D., Seiler R., Fleischmann A., Bagryanova L., Kim S.R., Chia D., Goodglick L., Shimizu Y., et al. Bladder Cancer Cells Secrete While Normal Bladder Cells Express but Do Not Secrete AGR2. Oncotarget. 2016;7:15747–15756. doi: 10.18632/oncotarget.7400. PubMed DOI PMC

Shi T., Gao Y., Quek S.I., Fillmore T.L., Nicora C.D., Su D., Zhao R., Kagan J., Srivastava S., Rodland K.D., et al. A Highly Sensitive Targeted Mass Spectrometric Assay for Quantification of AGR2 Protein in Human Urine and Serum. J. Proteome Res. 2014;13:875–882. doi: 10.1021/pr400912c. PubMed DOI PMC

Wayner E.A., Quek S.-I., Ahmad R., Ho M.E., Loprieno M.A., Zhou Y., Ellis W.J., True L.D., Liu A.Y. Development of an ELISA to Detect the Secreted Prostate Cancer Biomarker AGR2 in Voided Urine. Prostate. 2012;72:1023–1034. doi: 10.1002/pros.21508. PubMed DOI

Kani K., Malihi P.D., Jiang Y., Wang H., Wang Y., Ruderman D.L., Agus D.B., Mallick P., Gross M.E. Anterior Gradient 2 (AGR2): Blood-Based Biomarker Elevated in Metastatic Prostate Cancer Associated with the Neuroendocrine Phenotype. Prostate. 2013;73:306–315. doi: 10.1002/pros.22569. PubMed DOI

Edgell T.A., Barraclough D.L., Rajic A., Dhulia J., Lewis K.J., Armes J.E., Barraclough R., Rudland P.S., Rice G.E., Autelitano D.J. Increased Plasma Concentrations of Anterior Gradient 2 Protein Are Positively Associated with Ovarian Cancer. Clin. Sci. (Lond.) 2010;118:717–725. doi: 10.1042/CS20090537. PubMed DOI

Liu A.Y., Kanan A.D., Radon T.P., Shah S., Weeks M.E., Foster J.M., Sosabowski J.K., Dumartin L., Crnogorac-Jurcevic T. AGR2, a Unique Tumor-Associated Antigen, Is a Promising Candidate for Antibody Targeting. Oncotarget. 2019;10:4276–4289. doi: 10.18632/oncotarget.26945. PubMed DOI PMC

Negi H., Merugu S.B., Mangukiya H.B., Li Z., Zhou B., Sehar Q., Kamle S., Yunus F.-U.-N., Mashausi D.S., Wu Z., et al. Anterior Gradient-2 Monoclonal Antibody Inhibits Lung Cancer Growth and Metastasis by Upregulating P53 Pathway and without Exerting Any Toxicological Effects: A Preclinical Study. Cancer Lett. 2019;449:125–134. doi: 10.1016/j.canlet.2019.01.025. PubMed DOI

Garri C., Howell S., Tiemann K., Tiffany A., Jalali-Yazdi F., Alba M.M., Katz J.E., Takahashi T.T., Landgraf R., Gross M.E., et al. Identification, Characterization and Application of a New Peptide against Anterior Gradient Homolog 2 (AGR2) Oncotarget. 2018;9:27363–27379. doi: 10.18632/oncotarget.25221. PubMed DOI PMC

Murray E., McKenna E.O., Burch L.R., Dillon J., Langridge-Smith P., Kolch W., Pitt A., Hupp T.R. Microarray-Formatted Clinical Biomarker Assay Development Using Peptide Aptamers to Anterior Gradient-2. Biochemistry. 2007;46:13742–13751. doi: 10.1021/bi7008739. PubMed DOI

Gray T.A., Murray E., Nowicki M.W., Remnant L., Scherl A., Muller P., Vojtesek B., Hupp T.R. Development of a Fluorescent Monoclonal Antibody-Based Assay to Measure the Allosteric Effects of Synthetic Peptides on Self-Oligomerization of AGR2 Protein. Protein Sci. 2013;22:1266–1278. doi: 10.1002/pro.2299. PubMed DOI PMC

Nidzworski D., Siuzdak K., Niedziałkowski P., Bogdanowicz R., Sobaszek M., Ryl J., Weiher P., Sawczak M., Wnuk E., Goddard W.A., et al. A Rapid-Response Ultrasensitive Biosensor for Influenza Virus Detection Using Antibody Modified Boron-Doped Diamond. Sci. Rep. 2017;7:15707. doi: 10.1038/s41598-017-15806-7. PubMed DOI PMC

Malinowska N., Białobrzeska W., Łęga T., Pałka K., Dziąbowska K., Żołędowska S., Czaczyk E., Pala K., Nidzworski D. Antibody Modified Gold Electrode as an Impedimetric Biosensor for the Detection of Streptococcus Pyogenes. Sensors. 2020;20:5324. doi: 10.3390/s20185324. PubMed DOI PMC

Gray T., Alsamman K., Murray E., Sims A., Hupp T. Engineering a Synthetic Cell Panel to Identify Signalling Components Reprogrammed by the Cell Growth Regulator Anterior Gradient-2. Mol. Biosyst. 2014;10 doi: 10.1039/C4MB00113C. PubMed DOI

Randles J.E.B. Kinetics of Rapid Electrode Reactions. Discuss. Faraday Soc. 1947;1:11–19. doi: 10.1039/df9470100011. DOI

Białobrzeska W., Firganek D., Czerkies M., Lipniacki T., Skwarecka M., Dziąbowska K., Cebula Z., Malinowska N., Bigus D., Bięga E., et al. Electrochemical Immunosensors Based on Screen-Printed Gold and Glassy Carbon Electrodes: Comparison of Performance for Respiratory Syncytial Virus Detection. Biosensors. 2020;10:175. doi: 10.3390/bios10110175. PubMed DOI PMC

Cebula Z., Żołędowska S., Dziąbowska K., Skwarecka M., Malinowska N., Białobrzeska W., Czaczyk E., Siuzdak K., Sawczak M., Bogdanowicz R., et al. Detection of the Plant Pathogen Pseudomonas Syringae Pv. Lachrymans on Antibody-Modified Gold Electrodes by Electrochemical Impedance Spectroscopy. Sensors. 2019;19:5411. doi: 10.3390/s19245411. PubMed DOI PMC

Niedzialkowski P., Slepski P., Wysocka J., Chamier-Cieminska J., Burczyk L., Sobaszek M., Wcislo A., Ossowski T., Bogdanowicz R., Ryl J. Multisine Impedimetric Probing of Biocatalytic Reactions for Label-Free Detection of DEFB1 Gene: How to Verify That Your Dog Is Not Human? Sens. Actuators B Chem. 2020;323:128664. doi: 10.1016/j.snb.2020.128664. DOI

Augustine S., Kumar P., Malhotra B.D. Amine-Functionalized MoO3@RGO Nanohybrid-Based Biosensor for Breast Cancer Detection. ACS Appl. Biol. Mater. 2019;2:5366–5378. doi: 10.1021/acsabm.9b00659. PubMed DOI

Gajdosova V., Lorencova L., Kasak P., Tkac J. Electrochemical Nanobiosensors for Detection of Breast Cancer Biomarkers. Sensors. 2020;20:4022. doi: 10.3390/s20144022. PubMed DOI PMC

Roberts A., Tripathi P.P., Gandhi S. Graphene Nanosheets as an Electric Mediator for Ultrafast Sensing of Urokinase Plasminogen Activator Receptor-A Biomarker of Cancer. Biosens. Bioelectron. 2019;141:111398. doi: 10.1016/j.bios.2019.111398. PubMed DOI

Negahdary M. Aptamers in Nanostructure-Based Electrochemical Biosensors for Cardiac Biomarkers and Cancer Biomarkers: A Review. Biosens. Bioelectron. 2020;152:112018. doi: 10.1016/j.bios.2020.112018. PubMed DOI

Kilic T., Valinhas A.T.D.S., Wall I., Renaud P., Carrara S. Label-Free Detection of Hypoxia-Induced Extracellular Vesicle Secretion from MCF-7 Cells. Sci. Rep. 2018;8:9402. doi: 10.1038/s41598-018-27203-9. PubMed DOI PMC

Nawaz M.A.H., Rauf S., Catanante G., Nawaz M.H., Nunes G., Marty J.L., Hayat A. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker. Sensors. 2016;16:1651. doi: 10.3390/s16101651. PubMed DOI PMC

Luo L., Wang L., Zeng L., Wang Y., Weng Y., Liao Y., Chen T., Xia Y., Zhang J., Chen J. A Ratiometric Electrochemical DNA Biosensor for Detection of Exosomal MicroRNA. Talanta. 2020;207:120298. doi: 10.1016/j.talanta.2019.120298. PubMed DOI

Tang Y., Dai Y., Huang X., Li L., Han B., Cao Y., Zhao J. Self-Assembling Peptide-Based Multifunctional Nanofibers for Electrochemical Identification of Breast Cancer Stem-like Cells. Anal. Chem. 2019;91:7531–7537. doi: 10.1021/acs.analchem.8b05359. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Anterior gradient proteins in gastrointestinal cancers: from cell biology to pathophysiology

. 2022 Oct ; 41 (42) : 4673-4685. [epub] 20220906

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...