The Sequence-specific Peptide-binding Activity of the Protein Sulfide Isomerase AGR2 Directs Its Stable Binding to the Oncogenic Receptor EpCAM

. 2018 Apr ; 17 (4) : 737-763. [epub] 20180116

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29339412

Grantová podpora
Wellcome Trust - United Kingdom
BB/C511599/1 Biotechnology and Biological Sciences Research Council - United Kingdom
094417/Z/10/Z Wellcome Trust - United Kingdom

Odkazy

PubMed 29339412
PubMed Central PMC5880107
DOI 10.1074/mcp.ra118.000573
PII: S1535-9476(20)33277-1
Knihovny.cz E-zdroje

AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131-135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway.

Zobrazit více v PubMed

Higa A., Mulot A., Delom F., Bouchecareilh M., Nguyen D. T., Boismenu D., Wise M. J., and Chevet E. (2011) Role of pro-oncogenic protein disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) in the control of endoplasmic reticulum homeostasis. J. Biol. Chem. 286, 44855–44868 PubMed PMC

Brychtova V., Mohtar A., Vojtesek B., and Hupp T. R. (2015) Mechanisms of anterior gradient-2 regulation and function in cancer. Semin. Cancer Biol. 33, 16–24 PubMed

Thompson D. A., and Weigel R. J. (1998) hAG-2, the human homologue of the Xenopus laevis cement gland gene XAG-2, is coexpressed with estrogen receptor in breast cancer cell lines. Biochem. Biophys. Res. Commun. 251, 111–116 PubMed

Aberger F., Weidinger G., Grunz H., and Richter K. (1998) Anterior specification of embryonic ectoderm: the role of the Xenopus cement gland-specific gene XAG-2. Mech. Develop. 72, 115–130 PubMed

Sive H. L., Hattori K., and Weintraub H. (1989) Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 58, 171–180 PubMed

Liu D., Rudland P. S., Sibson D. R., Platt-Higgins A., and Barraclough R. (2005) Human homologue of cement gland protein, a novel metastasis inducer associated with breast carcinomas. Cancer Res. 65, 3796–3805 PubMed

Patel P., Clarke C., Barraclough D. L., Jowitt T. A., Rudland P. S., Barraclough R., and Lian L. Y. (2013) Metastasis-promoting anterior gradient 2 protein has a dimeric thioredoxin fold structure and a role in cell adhesion. J. Mol. Biol. 425, 929–943 PubMed

Kumar A., Godwin J. W., Gates P. B., Garza-Garcia A. A., and Brockes J. P. (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318, 772–777 PubMed PMC

Zhu Q., Mangukiya H. B., Mashausi D. S., Guo H., Negi H., Merugu S. B., Wu Z., and Li D. (2017) Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain. FEBS J. PubMed

Schroeder B. W., Verhaeghe C., Park S. W., Nguyenvu L. T., Huang X., Zhen G., and Erle D. J. (2012) AGR2 is induced in asthma and promotes allergen-induced mucin overproduction. Am. J. Respiratory Cell Mol. Biol. 47, 178–185 PubMed PMC

Di Valentin E., Crahay C., Garbacki N., Hennuy B., Gueders M., Noel A., Foidart J. M., Grooten J., Colige A., Piette J., and Cataldo D. (2009) New asthma biomarkers: lessons from murine models of acute and chronic asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L185–L197 PubMed

Fessart D., Domblides C., Avril T., Eriksson L. A., Begueret H., Pineau R., Malrieux C., Dugot-Senant N., Lucchesi C., Chevet E., and Delom F. (2016) Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties. Elife 5 PubMed PMC

Jessop C. E., Watkins R. H., Simmons J. J., Tasab M., and Bulleid N. J. (2009) Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. J. Cell Sci. 122, 4287–4295 PubMed PMC

Persson S., Rosenquist M., Knoblach B., Khosravi-Far R., Sommarin M., and Michalak M. (2005) Diversity of the protein disulfide isomerase family: identification of breast tumor induced Hag2 and Hag3 as novel members of the protein family. Mol. Phylogenet. Evol. 36, 734–740 PubMed

Park S. W., Zhen G., Verhaeghe C., Nakagami Y., Nguyenvu L. T., Barczak A. J., Killeen N., and Erle D. J. (2009) The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc. Natl. Acad. Sci. U.S.A. 106, 6950–6955 PubMed PMC

Dong A., Wodziak D., and Lowe A. W. (2015) Epidermal growth factor receptor (EGFR) signaling requires a specific endoplasmic reticulum thioredoxin for the post-translational control of receptor presentation to the cell surface. J. Biol. Chem. 290, 8016–8027 PubMed PMC

Gray T. A., Alsamman K., Murray E., Sims A. H., and Hupp T. R. (2014) Engineering a synthetic cell panel to identify signalling components reprogrammed by the cell growth regulator anterior gradient-2. Mol. bioSystems 10, 1409–1425 PubMed

Fletcher G. C., Patel S., Tyson K., Adam P. J., Schenker M., Loader J. A., Daviet L., Legrain P., Parekh R., Harris A. L., and Terrett J. A. (2003) hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan. Br. J. Cancer 88, 579–585 PubMed PMC

Arumugam T., Deng D., Bover L., Wang H., Logsdon C. D., and Ramachandran V. (2015) New blocking antibodies against novel AGR2-C4.4A pathway reduce growth and metastasis of pancreatic tumors and increase survival in mice. Mol. Cancer Therap. 14, 941–951 PubMed PMC

Maslon M. M., Hrstka R., Vojtesek B., and Hupp T. R. (2010) A divergent substrate-binding loop within the pro-oncogenic protein anterior gradient-2 forms a docking site for Reptin. J. Mol. Biol. 404, 418–438 PubMed

Rosenbaum J., Baek S. H., Dutta A., Houry W. A., Huber O., Hupp T. R., and Matias P. M. (2013) The emergence of the conserved AAA+ ATPases Pontin and Reptin on the signaling landscape. Sci. Signaling 6, mr1 PubMed PMC

Healy A. R., Houston D. R., Remnant L., Huart A. S., Brychtova V., Maslon M. M., Meers O., Muller P., Krejci A., Blackburn E. A., Vojtesek B., Hernychova L., Walkinshaw M. D., Westwood N. J., and Hupp T. R. (2015) Discovery of a novel ligand that modulates the protein-protein interactions of the AAA+ superfamily oncoprotein reptin. Chem. Sci. 6, 3109–3116 PubMed PMC

Gray T. A., Murray E., Nowicki M. W., Remnant L., Scherl A., Muller P., Vojtesek B., and Hupp T. R. (2013) Development of a fluorescent monoclonal antibody-based assay to measure the allosteric effects of synthetic peptides on self-oligomerization of AGR2 protein. Protein Sci. 22, 1266–1278 PubMed PMC

Murray E., McKenna E. O., Burch L. R., Dillon J., Langridge-Smith P., Kolch W., Pitt A., and Hupp T. R. (2007) Microarray-formatted clinical biomarker assay development using peptide aptamers to anterior gradient-2. Biochemistry 46, 13742–13751 PubMed

Bottger V., Bottger A., Howard S. F., Picksley S. M., Chene P., Garcia-Echeverria C., Hochkeppel H. K., and Lane D. P. (1996) Identification of novel mdm2 binding peptides by phage display. Oncogene 13, 2141–2147 PubMed

Nicholson J., Scherl A., Way L., Blackburn E. A., Walkinshaw M. D., Ball K. L., and Hupp T. R. (2014) A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2. Cell Sig.. 26, 1243–1257 PubMed

O'Neill J. R., Pak H. S., Pairo-Castineira E., Save V., Paterson-Brown S., Nenutil R., Vojtesek B., Overton I., Scherl A., and Hupp T. R. (2017) Quantitative Shotgun Proteomics Unveils Candidate Novel Esophageal Adenocarcinoma (EAC)-specific Proteins. Mol. Cell. Proteomics 16, 1138–1150 PubMed PMC

Fourtouna A., Murray E., Nicholson J., Maslon M. M., Pang L., Dryden D., and Hupp T. (2009) The anterior gradient-2 pathway as a model for developing peptide-aptamer anti-cancer dtug leads that stimulate p53 function. Curr. Chem. Biol. 3, 124–137

Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 PubMed

Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 PubMed

Fourtouna A., Murray E., Nicholson J., Maslon M. M., Pang L., Dryden D. T. F., and Hupp T. R. (2009) The Anterior Gradient-2 Pathway as a Model for Developing Peptide-Aptamer Anti-Cancer Drug Leads that Stimulate p53 Function. Curr. Chem. Biol. 3, 124–137

Hernychova L., Man P., Verma C., Nicholson J., Sharma C. A., Ruckova E., Teo J. Y., Ball K., Vojtesek B., and Hupp T. R. (2013) Identification of a second Nutlin-3 responsive interaction site in the N-terminal domain of MDM2 using hydrogen/deuterium exchange mass spectrometry. Proteomics 13, 2512–2525 PubMed

Kavan D., and Man P. (2011) MSTools - Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 302, 53–58

Gray T. A., MacLaine N. J., Michie C. O., Bouchalova P., Murray E., Howie J., Hrstka R., Maslon M. M., Nenutil R., Vojtesek B., Langdon S., Hayward L., Gourley C., and Hupp T. R. (2012) Anterior Gradient-3: a novel biomarker for ovarian cancer that mediates cisplatin resistance in xenograft models. J. Immunol. Methods 378, 20–32 PubMed

Soderberg O., Leuchowius K. J., Gullberg M., Jarvius M., Weibrecht I., Larsson L. G., and Landegren U. (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45, 227–232 PubMed

Lee J. J., Park Y. S., and Lee K. J. (2015) Hydrogen-deuterium exchange mass spectrometry for determining protein structural changes in drug discovery. Arch. Pharm. Res. 38, 1737–1745 PubMed

Vassilev L. T., Vu B. T., Graves B., Carvajal D., Podlaski F., Filipovic Z., Kong N., Kammlott U., Lukacs C., Klein C., Fotouhi N., and Liu E. A. (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 PubMed

Fraser J. A., Worrall E. G., Lin Y., Landre V., Pettersson S., Blackburn E., Walkinshaw M., Muller P., Vojtesek B., Ball K., and Hupp T. R. (2015) Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis. J. Mol. Biol. 427, 1728–1747 PubMed

Gupta A., Dong A., and Lowe A. W. (2012) AGR2 gene function requires a unique endoplasmic reticulum localization motif. J. Biol. Chem. 287, 4773–4782 PubMed PMC

Martowicz A., Seeber A., and Untergasser G. (2016) The role of EpCAM in physiology and pathology of the epithelium. Histol. Histopathol. 31, 349–355 PubMed

Ladwein M., Pape U. F., Schmidt D. S., Schnolzer M., Fiedler S., Langbein L., Franke W. W., Moldenhauer G., and Zoller M. (2005) The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Exp. Cell Res. 309, 345–357 PubMed

Blokzijl A., Zieba A., Hust M., Schirrmann T., Helmsing S., Grannas K., Hertz E., Moren A., Chen L., Soderberg O., Moustakas A., Dubel S., and Landegren U. (2016) Single Chain Antibodies as Tools to Study transforming growth factor-beta-Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens. Mol. Cell. Proteomics 15, 1848–1856 PubMed PMC

Weibrecht I., Leuchowius K. J., Clausson C. M., Conze T., Jarvius M., Howell W. M., Kamali-Moghaddam M., and Soderberg O. (2010) Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev. Proteomics 7, 401–409 PubMed

Koos B., Andersson L., Clausson C. M., Grannas K., Klaesson A., Cane G., and Soderberg O. (2014) Analysis of protein interactions in situ by proximity ligation assays. Curr. Top. Microbiol. Immunol. 377, 111–126 PubMed

Morelli X., and Hupp T. (2012) Searching for the Holy Grail; protein-protein interaction analysis and modulation. EMBO Reports 13, 877–879 PubMed PMC

Chevet E., Fessart D., Delom F., Mulot A., Vojtesek B., Hrstka R., Murray E., Gray T., and Hupp T. (2013) Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development. Oncogene 32, 2499–2509 PubMed

Maslon M. M., Hrstka R., Vojtesek B., and Hupp T. R. (2010) A divergent substrate-binding loop within the pro-oncogenic protein anterior gradient-2 forms a docking site for Reptin. J. Mol. Biol. 404, 418–438 PubMed

Healy A., Houston D., Remnant L., Huart A., Brychtova V., Maslon M., Meers O., Muller P., Krejci A., Blackburn E., Vojtesek B., Hernychova L., Walkinshaw M., Westwood N., and H TR (2015) Discovery of a novel ligand that modulates theprotein-protein interactions of the AAA+ superfamily oncoprotein reptin. Chem. Sci. 6, 3109–3116 PubMed PMC

Tompa P., Davey N. E., Gibson T. J., and Babu M. M. (2014) A million peptide motifs for the molecular biologist. Mol. Cell 55, 161–169 PubMed

Yu J., and Smith G. P. (1996) Affinity maturation of phage-displayed peptide ligands. Methods Enzymol. 267, 3–27 PubMed

Ray-Coquard I., Blay J. Y., Italiano A., Le Cesne A., Penel N., Zhi J., Heil F., Rueger R., Graves B., Ding M., Geho D., Middleton S. A., Vassilev L. T., Nichols G. L., and Bui B. N. (2012) Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet. Oncol. 13, 1133–1140 PubMed

Dornan D., Shimizu H., Burch L., Smith A. J., and Hupp T. R. (2003) The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol. Cell. Biol. 23, 8846–8861 PubMed PMC

Neduva V., and Russell R. B. (2006) Peptides mediating interaction networks: new leads at last. Curr. Opin. Biotechnol. 17, 465–471 PubMed

Chodavarapu S., Jones A. D., Feig M., and Kaguni J. M. (2016) DnaC traps DnaB as an open ring and remodels the domain that binds primase. Nucleic Acids Res. 44, 210–220 PubMed PMC

Durech M., Trcka F., Man P., Blackburn E. A., Hernychova L., Dvorakova P., Coufalova D., Kavan D., Vojtesek B., and Muller P. (2016) Novel entropically driven conformation-specific interactions with Tomm34 protein modulate Hsp70 protein folding and ATPase activities. Mol. Cell. Proteomics 15, 1710–1727 PubMed PMC

Narayan V., Landre V., Ning J., Hernychova L., Muller P., Verma C., Walkinshaw M. D., Blackburn E. A., and Ball K. L. (2015) Protein-protein interactions modulate the docking-dependent E3-ubiquitin ligase activity of carboxy-terminus of Hsc70-interacting protein (CHIP). Mol. Cell. Proteomics 14, 2973–2987 PubMed PMC

Mandell J. G., Falick A. M., and Komives E. A. (1998) Measurement of amide hydrogen exchange by MALDI-TOF mass spectrometry. Anal. Chem. 70, 3987–3995 PubMed

Burns K. M., Rey M., Baker C. A., and Schriemer D. C. (2013) Platform dependencies in bottom-up hydrogen/deuterium exchange mass spectrometry. Mol. Cell. Proteomics 12, 539–548 PubMed PMC

Sheff J. G., and Schriemer D. C. (2014) Toward standardizing deuterium content reporting in hydrogen exchange-MS. Anal. Chem. 86, 11962–11965 PubMed

Walters B. T., Ricciuti A., Mayne L., and Englander S. W. (2012) Minimizing back exchange in the hydrogen exchange-mass spectrometry experiment. J. Am. Soc. Mass Spectrom.y 23, 2132–2139 PubMed PMC

Koos B., and Soderberg O. (2015) Closing in on life: proximity dependent methods for life sciences. Oncotarget 6, 17867–17868 PubMed PMC

Pathan M., Keerthikumar S., Ang C. S., Gangoda L., Quek C. Y., Williamson N. A., Mouradov D., Sieber O. M., Simpson R. J., Salim A., Bacic A., Hill A. F., Stroud D. A., Ryan M. T., Agbinya J. I., Mariadason J. M., Burgess A. W., and Mathivanan S. (2015) FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 15, 2597–2601 PubMed

Zobrazit více v PubMed

PDB
2LNS, 4MZ, 4MZV

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...