Characterization of the AGR2 Interactome Uncovers New Players of Protein Disulfide Isomerase Network in Cancer Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34929376
PubMed Central
PMC8816719
DOI
10.1016/j.mcpro.2021.100188
PII: S1535-9476(21)00160-2
Knihovny.cz E-zdroje
- Klíčová slova
- anterior gradient protein 2, mass spectrometry, protein disulfide isomerase, protein–protein interactions, secretory pathway,
- MeSH
- chromatografie kapalinová MeSH
- lidé MeSH
- mapy interakcí proteinů MeSH
- mukoproteiny * metabolismus MeSH
- nádory * MeSH
- onkogenní proteiny * metabolismus MeSH
- proteindisulfidisomerasy * MeSH
- simulace molekulového dockingu MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AGR2 protein, human MeSH Prohlížeč
- mukoproteiny * MeSH
- onkogenní proteiny * MeSH
- proteindisulfidisomerasy * MeSH
Anterior gradient 2 (AGR2) is an endoplasmic reticulum (ER)-resident protein disulfide isomerase (PDI) known to be overexpressed in many human epithelial cancers and is involved in cell migration, cellular transformation, angiogenesis, and metastasis. This protein inhibits the activity of the tumor suppressor p53, and its expression levels can be used to predict cancer patient outcome. However, the precise network of AGR2-interacting partners and clients remains to be fully characterized. Herein, we used label-free quantification and also stable isotope labeling with amino acids in cell culture-based LC-MS/MS analyses to identify proteins interacting with AGR2. Functional annotation confirmed that AGR2 and its interaction partners are associated with processes in the ER that maintain intracellular metabolic homeostasis and participate in the unfolded protein response, including those associated with changes in cellular metabolism, energy, and redox states in response to ER stress. As a proof of concept, the interaction between AGR2 and PDIA3, another ER-resident PDI, was studied in more detail. Pathway analysis revealed that AGR2 and PDIA3 play roles in protein folding in ER, including post-translational modification and in cellular response to stress. We confirmed the AGR2-PDIA3 complex formation in cancer cells, which was enhanced in response to ER stress. Accordingly, molecular docking characterized potential quaternary structure of this complex; however, it remains to be elucidated whether AGR2 rather contributes to PDIA3 maturation in ER, the complex directly acts in cellular signaling, or mediates AGR2 secretion. Our study provides a comprehensive insight into the protein-protein interaction network of AGR2 by identifying functionally relevant proteins and related cellular and biochemical pathways associated with the role of AGR2 in cancer cells.
Central European Institute for Technology Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Human Protein Sciences Faculty of Medicine University of Geneva Geneva Switzerland
INSERM U1242 Chemistry Oncogenesis Stress Signaling Université Rennes 1 Rennes France
Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Ryan D.P., Matthews J.M. Protein-protein interactions in human disease. Curr. Opin. Struct. Biol. 2005;15:441–446. PubMed
Maryas J., Faktor J., Dvorakova M., Struharova I., Grell P., Bouchal P. Proteomics in investigation of cancer metastasis: Functional and clinical consequences and methodological challenges. Proteomics. 2014;14:426–440. PubMed
Chevet E., Fessart D., Delom F., Mulot A., Vojtesek B., Hrstka R., Murray E., Gray T., Hupp T. Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development. Oncogene. 2013;32:2499–2509. PubMed
Delom F., Mohtar M.A., Hupp T., Fessart D. The anterior gradient-2 interactome. Am. J. Physiol. Cell Physiol. 2020;318:C40–C47. PubMed
Persson S., Rosenquist M., Knoblach B., Khosravi-Far R., Sommarin M., Michalak M. Diversity of the protein disulfide isomerase family: Identification of breast tumor induced Hag2 and Hag3 as novel members of the protein family. Mol. Phylogenet. Evol. 2005;36:734–740. PubMed
Higa A., Mulot A., Delom F., Bouchecareilh M., Nguyen D.T., Boismenu D., Wise M.J., Chevet E. Role of pro-oncogenic protein disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) in the control of endoplasmic reticulum homeostasis. J. Biol. Chem. 2011;286:44855–44868. PubMed PMC
Brychtova V., Vojtesek B., Hrstka R. Anterior gradient 2: A novel player in tumor cell biology. Cancer Lett. 2011;304:1–7. PubMed
Hu R., Huffman K.E., Chu M., Zhang Y., Minna J.D., Yu Y. Quantitative secretomic analysis identifies extracellular protein factors that modulate the metastatic phenotype of non-small cell lung cancer. J. Proteome Res. 2016;15:477–486. PubMed PMC
Wayner E.A., Quek S.I., Ahmad R., Ho M.E., Loprieno M.A., Zhou Y., Ellis W.J., True L.D., Liu A.Y. Development of an ELISA to detect the secreted prostate cancer biomarker AGR2 in voided urine. Prostate. 2012;72:1023–1034. PubMed
Di Maro G., Salerno P., Unger K., Orlandella F.M., Monaco M., Chiappetta G., Thomas G., Oczko-Wojciechowska M., Masullo M., Jarzab B., Santoro M., Salvatore G. Anterior gradient protein 2 promotes survival, migration and invasion of papillary thyroid carcinoma cells. Mol. Cancer. 2014;13:160. PubMed PMC
Hrstka R., Bouchalova P., Michalova E., Matoulkova E., Muller P., Coates P.J., Vojtesek B. AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway. Mol. Oncol. 2016;10:652–662. PubMed PMC
Wang Z., Hao Y., Lowe A.W. The adenocarcinoma-associated antigen, AGR2, promotes tumor growth, cell migration, and cellular transformation. Cancer Res. 2008;68:492–497. PubMed
Fletcher G.C., Patel S., Tyson K., Adam P.J., Schenker M., Loader J.A., Daviet L., Legrain P., Parekh R., Harris A.L., Terrett J.A. hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan. Br. J. Cancer. 2003;88:579–585. PubMed PMC
Park S.W., Zhen G., Verhaeghe C., Nakagami Y., Nguyenvu L.T., Barczak A.J., Killeen N., Erle D.J. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc. Natl. Acad. Sci. U. S. A. 2009;106:6950–6955. PubMed PMC
Maurel M., Obacz J., Avril T., Ding Y.P., Papadodima O., Treton X., Daniel F., Pilalis E., Horberg J., Hou W., Beauchamp M.C., Tourneur-Marsille J., Cazals-Hatem D., Sommerova L., Samali A., et al. Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation. EMBO Mol. Med. 2019;11:e10120. PubMed PMC
Stark C., Breitkreutz B.J., Reguly T., Boucher L., Breitkreutz A., Tyers M. BioGRID: A general repository for interaction datasets. Nucleic Acids Res. 2006;34:D535–D539. PubMed PMC
Murray E., McKenna E.O., Burch L.R., Dillon J., Langridge-Smith P., Kolch W., Pitt A., Hupp T.R. Microarray-formatted clinical biomarker assay development using peptide aptamers to anterior gradient-2. Biochemistry. 2007;46:13742–13751. PubMed
Prochazkova I., Lenco J., Fucikova A., Dresler J., Capkova L., Hrstka R., Nenutil R., Bouchal P. Targeted proteomics driven verification of biomarker candidates associated with breast cancer aggressiveness. Biochim. Biophys. Acta Proteins Proteom. 2017;1865:488–498. PubMed
Bouchal P., Roumeliotis T., Hrstka R., Nenutil R., Vojtesek B., Garbis S.D. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. J. Proteome Res. 2009;8:362–373. PubMed
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. PubMed PMC
Bindea G., Galon J., Mlecnik B. CluePedia cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29:661–663. PubMed PMC
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., Fridman W.H., Pages F., Trajanoski Z., Galon J. ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093. PubMed PMC
Mohtar M.A., Hernychova L., O'Neill J.R., Lawrence M.L., Murray E., Vojtesek B., Hupp T.R. The sequence-specific peptide-binding activity of the protein sulfide isomerase AGR2 directs its stable binding to the oncogenic receptor EpCAM. Mol. Cell Proteomics. 2018;17:737–763. PubMed PMC
Lamiable A., Thevenet P., Rey J., Vavrusa M., Derreumaux P., Tuffery P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016;44:W449–W454. PubMed PMC
Shen Y., Maupetit J., Derreumaux P., Tuffery P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J. Chem. Theor. Comput. 2014;10:4745–4758. PubMed
Thevenet P., Shen Y., Maupetit J., Guyon F., Derreumaux P., Tuffery P. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 2012;40:W288–W293. PubMed PMC
van Zundert G.C.P., Rodrigues J., Trellet M., Schmitz C., Kastritis P.L., Karaca E., Melquiond A.S.J., van Dijk M., de Vries S.J., Bonvin A. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 2016;428:720–725. PubMed
Patel P., Clarke C., Barraclough D.L., Jowitt T.A., Rudland P.S., Barraclough R., Lian L.Y. Metastasis-promoting anterior gradient 2 protein has a dimeric thioredoxin fold structure and a role in cell adhesion. J. Mol. Biol. 2013;425:929–943. PubMed
Nguyen V.D., Biterova E., Salin M., Wierenga R.K., Ruddock L.W. Crystal structure of human anterior gradient protein 3. Acta Crystallogr. F Struct. Biol. Commun. 2018;74(Pt 7):425–430. PubMed PMC
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The protein data bank. Nucleic Acids Res. 2000;28:235–242. PubMed PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. PubMed PMC
Park T., Won J., Baek M., Seok C. GalaxyHeteromer: Protein heterodimer structure prediction by template-based and ab initio docking. Nucleic Acids Res. 2021;49:W237–W241. PubMed PMC
Desta I.T., Porter K.A., Xia B., Kozakov D., Vajda S. Performance and its limits in rigid body protein-protein docking. Structure. 2020;28:1071–1081.e3. PubMed PMC
Dong G., Wearsch P.A., Peaper D.R., Cresswell P., Reinisch K.M. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity. 2009;30:21–32. PubMed PMC
Laskowski R.A., Jablonska J., Pravda L., Varekova R.S., Thornton J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018;27:129–134. PubMed PMC
Moretti R., Lyskov S., Das R., Meiler J., Gray J.J. Web-accessible molecular modeling with Rosetta: The Rosetta online server that includes everyone (ROSIE) Protein Sci. 2018;27:259–268. PubMed PMC
Marin-Lopez M.A., Planas-Iglesias J., Aguirre-Plans J., Bonet J., Garcia-Garcia J., Fernandez-Fuentes N., Oliva B. On the mechanisms of protein interactions: Predicting their affinity from unbound tertiary structures. Bioinformatics. 2018;34:592–598. PubMed PMC
Bouchal P., Dvorakova M., Scherl A., Garbis S.D., Nenutil R., Vojtesek B. Intact protein profiling in breast cancer biomarker discovery: Protein identification issue and the solutions based on 3D protein separation, bottom-up and top-down mass spectrometry. Proteomics. 2013;13:1053–1058. PubMed
Holden P., Horton W.A. Crude subcellular fractionation of cultured mammalian cell lines. BMC Res. Notes. 2009;2:243. PubMed PMC
Moser B., Hochreiter B., Herbst R., Schmid J.A. Fluorescence colocalization microscopy analysis can be improved by combining object-recognition with pixel-intensity-correlation. Biotechnol. J. 2017;12:1600332. PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
Ostatna V., Vargova V., Hrstka R., Durech M., Vojtesek B., Palecek E. Effect of His(6)-tagging of anterior gradient 2 protein on its electro-oxidation. Electrochimica Acta. 2014;150:218–222.
Sicari D., Centonze F.G., Pineau R., Le Reste P.J., Negroni L., Chat S., Mohtar M.A., Thomas D., Gillet R., Hupp T., Chevet E., Igbaria A. Reflux of endoplasmic reticulum proteins to the cytosol inactivates tumor suppressors. EMBO Rep. 2021;22 PubMed PMC
Bommiasamy H., Back S.H., Fagone P., Lee K., Meshinchi S., Vink E., Sriburi R., Frank M., Jackowski S., Kaufman R.J., Brewer J.W. ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci. 2009;122(Pt 10):1626–1636. PubMed PMC
Schuck S., Prinz W.A., Thorn K.S., Voss C., Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 2009;187:525–536. PubMed PMC
Sriburi R., Bommiasamy H., Buldak G.L., Robbins G.R., Frank M., Jackowski S., Brewer J.W. Coordinate regulation of phospholipid biosynthesis and secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum biogenesis. J. Biol. Chem. 2007;282:7024–7034. PubMed
Cernocka H., Vonka P., Kasalova V., Sommerova L., Vandova V., Hrstka R., Ostatna V. AGR2-AGR3 hetero-oligomeric complexes: Identification and characterization. Bioelectrochemistry. 2021;140:107808. PubMed
Pirneskoski A., Klappa P., Lobell M., Williamson R.A., Byrne L., Alanen H.I., Salo K.E., Kivirikko K.I., Freedman R.B., Ruddock L.W. Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase. J. Biol. Chem. 2004;279:10374–10381. PubMed
Lee E., Lee D.H. Emerging roles of protein disulfide isomerase in cancer. BMB Rep. 2017;50:401–410. PubMed PMC
Arumugam T., Deng D., Bover L., Wang H., Logsdon C.D., Ramachandran V. New blocking antibodies against novel AGR2-C4.4A pathway reduce growth and metastasis of pancreatic tumors and increase survival in mice. Mol. Cancer Ther. 2015;14:941–951. PubMed PMC
Dong A., Wodziak D., Lowe A.W. Epidermal growth factor receptor (EGFR) signaling requires a specific endoplasmic reticulum thioredoxin for the post-translational control of receptor presentation to the cell surface. J. Biol. Chem. 2015;290:8016–8027. PubMed PMC
Stelzl U., Worm U., Lalowski M., Haenig C., Brembeck F.H., Goehler H., Stroedicke M., Zenkner M., Schoenherr A., Koeppen S., Timm J., Mintzlaff S., Abraham C., Bock N., Kietzmann S., et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell. 2005;122:957–968. PubMed
Tiemann K., Garri C., Lee S.B., Malihi P.D., Park M., Alvarez R.M., Yap L.P., Mallick P., Katz J.E., Gross M.E., Kani K. Loss of ER retention motif of AGR2 can impact mTORC signaling and promote cancer metastasis. Oncogene. 2019;38:3003–3018. PubMed PMC
Worfolk J.C., Bell S., Simpson L.D., Carne N.A., Francis S.L., Engelbertsen V., Brown A.P., Walker J., Viswanath Y.K., Benham A.M. Elucidation of the AGR2 interactome in esophageal adenocarcinoma cells identifies a redox-sensitive chaperone Hub for the quality control of MUC-5AC. Antioxid. Redox Signal. 2019;31:1117–1132. PubMed
Ryu J., Park S.G., Lee P.Y., Cho S., Lee D.H., Kim G.H., Kim J.H., Park B.C. Dimerization of pro-oncogenic protein anterior gradient 2 is required for the interaction with BiP/GRP78. Biochem. Biophys. Res. Commun. 2013;430:610–615. PubMed
Pobre K.F.R., Poet G.J., Hendershot L.M. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J. Biol. Chem. 2019;294:2098–2108. PubMed PMC
Gold L.I., Eggleton P., Sweetwyne M.T., Van Duyn L.B., Greives M.R., Naylor S.M., Michalak M., Murphy-Ullrich J.E. Calreticulin: Non-endoplasmic reticulum functions in physiology and disease. FASEB J. 2010;24:665–683. PubMed PMC
Kielbik M., Szulc-Kielbik I., Klink M. Calreticulin-multifunctional chaperone in immunogenic cell death: Potential significance as a prognostic biomarker in ovarian cancer patients. Cells. 2021;10:130. PubMed PMC
Sommerova L., Ondrouskova E., Martisova A., Zoumpourlis V., Galtsidis S., Hrstka R. ZEB1/miR-200c/AGR2: A new regulatory loop modulating the epithelial-mesenchymal transition in lung adenocarcinomas. Cancers (Basel) 2020;12:1614. PubMed PMC
Diaz P., Sandoval-Borquez A., Bravo-Sagua R., Quest A.F.G., Lavandero S. Perspectives on organelle interaction, protein dysregulation, and cancer disease. Front. Cell Dev. Biol. 2021;9:613336. PubMed PMC
Shishkin S.S., Eremina L.S., Kovalev L.I., Kovaleva M.A. AGR2, ERp57/GRP58, and some other human protein disulfide isomerases. Biochemistry (Mosc) 2013;78:1415–1430. PubMed
Coe H., Michalak M. ERp57, a multifunctional endoplasmic reticulum resident oxidoreductase. Int. J. Biochem. Cell Biol. 2010;42:796–799. PubMed
Groenendyk J., Peng Z., Dudek E., Fan X., Mizianty M.J., Dufey E., Urra H., Sepulveda D., Rojas-Rivera D., Lim Y., Kim D.H., Baretta K., Srikanth S., Gwack Y., Ahnn J., et al. Interplay between the oxidoreductase PDIA6 and microRNA-322 controls the response to disrupted endoplasmic reticulum calcium homeostasis. Sci. Signal. 2014;7:ra54. PubMed PMC
Fessart D., Domblides C., Avril T., Eriksson L.A., Begueret H., Pineau R., Malrieux C., Dugot-Senant N., Lucchesi C., Chevet E., Delom F. Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties. Elife. 2016;5:e13887. PubMed PMC
Shental-Bechor D., Levy Y. Folding of glycoproteins: Toward understanding the biophysics of the glycosylation code. Curr. Opin. Struct. Biol. 2009;19:524–533. PubMed
Marjon P.L., Bobrovnikova-Marjon E.V., Abcouwer S.F. Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Mol. Cancer. 2004;3:4. PubMed PMC
Mihailidou C., Panagiotou C., Kiaris H., Kassi E., Moutsatsou P. Crosstalk between C/EBP homologous protein (CHOP) and glucocorticoid receptor in lung cancer. Mol. Cell Endocrinol. 2016;436:211–223. PubMed
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., Perez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. PubMed PMC