Next-generation sequencing of a combinatorial peptide phage library screened against ubiquitin identifies peptide aptamers that can inhibit the in vitro ubiquitin transfer cascade
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36532480
PubMed Central
PMC9755681
DOI
10.3389/fmicb.2022.875556
Knihovny.cz E-zdroje
- Klíčová slova
- aptamers, molecular dynamics, next-generation sequencing, phage-peptide, protein–peptide binding, ubiquitin,
- Publikační typ
- časopisecké články MeSH
Defining dynamic protein-protein interactions in the ubiquitin conjugation reaction is a challenging research area. Generating peptide aptamers that target components such as ubiquitin itself, E1, E2, or E3 could provide tools to dissect novel features of the enzymatic cascade. Next-generation deep sequencing platforms were used to identify peptide sequences isolated from phage-peptide libraries screened against Ubiquitin and its ortholog NEDD8. In over three rounds of selection under differing wash criteria, over 13,000 peptides were acquired targeting ubiquitin, while over 10,000 peptides were selected against NEDD8. The overlap in peptides against these two proteins was less than 5% suggesting a high degree in specificity of Ubiquitin or NEDD8 toward linear peptide motifs. Two of these ubiquitin-binding peptides were identified that inhibit both E3 ubiquitin ligases MDM2 and CHIP. NMR analysis highlighted distinct modes of binding of the two different peptide aptamers. These data highlight the utility of using next-generation sequencing of combinatorial phage-peptide libraries to isolate peptide aptamers toward a protein target that can be used as a chemical tool in a complex multi-enzyme reaction.
Faculty of Chemistry University of Gdańsk Gdańsk Poland
Institute of Biochemistry and Biophysics Polish Academy of Sciences Warsaw Poland
International Centre for Cancer Vaccine Science University of Gdańsk Gdańsk Poland
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czechia
University of Edinburgh Institute of Genetics and Molecular Medicine Edinburgh United Kingdom
Zobrazit více v PubMed
Bailly A., Perrin A., Bou Malhab L. J., Pion E., Larance M., Nagala M., et al. . (2016). The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway. Oncogene 35, 415–426. doi: 10.1038/onc.2015.104, PMID: PubMed DOI
Bialas J., Groettrup M., Aichem A. (2015). Conjugation of the ubiquitin activating enzyme UBE1 with the ubiquitin-like modifier FAT10 targets it for proteasomal degradation. PLoS One 10:e0120329. doi: 10.1371/journal.pone.0120329, PMID: PubMed DOI PMC
Bottger V., Bottger A., Howard S. F., Picksley S. M., Chene P., Garcia-Echeverria C., et al. . (1996). Identification of novel mdm2 binding peptides by phage display. Oncogene 13, 2141–2147. PMID: PubMed
Burch L., Shimizu H., Smith A., Patterson C., Hupp T. R. (2004). Expansion of protein interaction maps by phage peptide display using MDM2 as a prototypical conformationally flexible target protein. J. Mol. Biol. 337, 129–145. doi: 10.1016/j.jmb.2004.01.017, PMID: PubMed DOI
Ceccarelli D. F., Tang X., Pelletier B., Orlicky S., Xie W., Plantevin V., et al. . (2011). An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cells 145, 1075–1087. doi: 10.1016/j.cell.2011.05.039, PMID: PubMed DOI
Ciechanover A. (2015). The unravelling of the ubiquitin system. Nat. Rev. Mol. Cell Biol. 16, 322–324. doi: 10.1038/nrm3982, PMID: PubMed DOI
Das R., Liang Y. H., Mariano J., Li J., Huang T., King A., et al. . (2013). Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine. EMBO J. 32, 2504–2516. doi: 10.1038/emboj.2013.174, PMID: PubMed DOI PMC
Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293. doi: 10.1007/BF00197809, PMID: PubMed DOI
Derda R., Tang S. K., Li S. C., Ng S., Matochko W., Jafari M. R. (2011). Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16, 1776–1803. doi: 10.3390/molecules16021776, PMID: PubMed DOI PMC
Derda R., Tang S. K., Whitesides G. M. (2010). Uniform amplification of phage with different growth characteristics in individual compartments consisting of monodisperse droplets. Angew. Chem. Int. Ed. Engl. 49, 5301–5304. doi: 10.1002/anie.201001143, PMID: PubMed DOI PMC
Deshaies R. J., Joazeiro C. A. (2009). RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434. doi: 10.1146/annurev.biochem.78.101807.093809 PubMed DOI
Dias-Neto E., Nunes D. N., Giordano R. J., Sun J., Botz G. H., Yang K., et al. . (2009). Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS One 4:e8338. doi: 10.1371/journal.pone.0008338, PMID: PubMed DOI PMC
Dikic I., Wakatsuki S., Walters K. J. (2009). Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659–671. doi: 10.1038/nrm2767, PMID: PubMed DOI PMC
Dinkel H., Van Roey K., Michael S., Davey N. E., Weatheritt R. J., Born D., et al. . (2014). The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res. 42, D259–D266. doi: 10.1093/nar/gkt1047, PMID: PubMed DOI PMC
Ernst A., Avvakumov G., Tong J., Fan Y., Zhao Y., Alberts P., et al. . (2013). A strategy for modulation of enzymes in the ubiquitin system. Science 339, 590–595. doi: 10.1126/science.1230161, PMID: PubMed DOI PMC
Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., et al. . (1994). Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003. doi: 10.1021/bi00185a040, PMID: PubMed DOI
Farrow N. A., Zhang O., Szabo A., Torchia D. A., Kay L. E. (1995). Spectral density function mapping using 15N relaxation data exclusively. J. Biomol. NMR 6, 153–162. doi: 10.1007/BF00211779, PMID: PubMed DOI
Fraser J. A., Worrall E. G., Lin Y., Landre V., Pettersson S., Blackburn E., et al. . (2015). Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis. J. Mol. Biol. 427, 1728–1747. doi: 10.1016/j.jmb.2014.12.011, PMID: PubMed DOI
Fuchs S., Nguyen H., Phan T., Burton M. F., Nieto L., Leeuwen I., et al. . (2013). Proline primed helix length as a modulator of the nuclear receptor-coactivator interaction. J. Am. Chem. Soc. 135, 4364–4371. doi: 10.1021/ja311748r, PMID: PubMed DOI
Gibson T. J., Dinkel H., Van Roey K., Diella F. (2015). Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad. Cell Commun. Signal 13:42. doi: 10.1186/s12964-015-0121-y, PMID: PubMed DOI PMC
Gong P., Canaan A., Wang B., Leventhal J., Snyder A., Nair V., et al. . (2010). The ubiquitin-like protein FAT10 mediates NF-kappaB activation. J. Am. Soc. Nephrol. 21, 316–326. doi: 10.1681/ASN.2009050479, PMID: PubMed DOI PMC
Haririnia A., Verma R., Purohit N., Twarog M. Z., Deshaies R. J., Bolon D., et al. . (2008). Mutations in the hydrophobic core of ubiquitin differentially affect its recognition by receptor proteins. J. Mol. Biol. 375, 979–996. doi: 10.1016/j.jmb.2007.11.016, PMID: PubMed DOI PMC
Heride C., Urbe S., Clague M. J. (2014). Ubiquitin code assembly and disassembly. Curr. Biol. 24, R215–R220. doi: 10.1016/j.cub.2014.02.002, PMID: PubMed DOI
Hernychova L., Man P., Verma C., Nicholson J., Sharma C. A., Ruckova E., et al. . (2013). Identification of a second Nutlin-3 responsive interaction site in the N-terminal domain of MDM2 using hydrogen/deuterium exchange mass spectrometry. Proteomics 13, 2512–2525. doi: 10.1002/pmic.201300029, PMID: PubMed DOI
Hu Z., Crews C. M. (2021). Recent developments in PROTAC-mediated protein degradation: from bench to clinic. Chembiochem. 23:e202100270. doi: 10.1002/cbic.202100270 PubMed DOI PMC
Hu M., Li P., Li M., Li W., Yao T., Wu J. W., et al. . (2002). Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cells 111, 1041–1054. doi: 10.1016/S0092-8674(02)01199-6, PMID: PubMed DOI
Huang H., Ceccarelli D. F., Orlicky S., St-Cyr D. J., Ziemba A., Garg P., et al. . (2014). E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nat. Chem. Biol. 10, 156–163. doi: 10.1038/nchembio.1412, PMID: PubMed DOI PMC
Kamadurai H. B., Souphron J., Scott D. C., Duda D. M., Miller D. J., Stringer D., et al. . (2009). Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol. Cell 36, 1095–1102. doi: 10.1016/j.molcel.2009.11.010, PMID: PubMed DOI PMC
Ketscher L., Knobeloch K. P. (2015). ISG15 uncut: dissecting enzymatic and non-enzymatic functions of USP18 in vivo. Cytokine 76, 569–571. doi: 10.1016/j.cyto.2015.03.006, PMID: PubMed DOI
Kneller J. M., Lu M., Bracken C. (2002). An effective method for the discrimination of motional anisotropy and chemical exchange. J. Am. Chem. Soc. 124, 1852–1853. doi: 10.1021/ja017461k, PMID: PubMed DOI
Komander D., Rape M. (2012). The ubiquitin code. Annu. Rev. Biochem. 81, 203–229. doi: 10.1146/annurev-biochem-060310-170328 PubMed DOI
Kunitani M., Johnson D., Snyder L. R. (1986). Model of protein conformation in the reversed-phase separation of interleukin-2 muteins. J. Chromatogr. 371, 313–333. doi: 10.1016/S0021-9673(01)94716-8, PMID: PubMed DOI
Labbadia J., Morimoto R. I. (2015). The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464. doi: 10.1146/annurev-biochem-060614-033955, PMID: PubMed DOI PMC
Landre V., Revi B., Mir M. G., Verma C., Hupp T. R., Gilbert N., et al. . (2017). Regulation of transcriptional activators by DNA-binding domain ubiquitination. Cell Death Differ. 24, 903–916. doi: 10.1038/cdd.2017.42, PMID: PubMed DOI PMC
Lee W., Tonelli M., Markley J. L. (2015). NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327. doi: 10.1093/bioinformatics/btu830, PMID: PubMed DOI PMC
Matochko W. L., Chu K., Jin B., Lee S. W., Whitesides G. M., Derda R. (2012). Deep sequencing analysis of phage libraries using Illumina platform. Methods 58, 47–55. doi: 10.1016/j.ymeth.2012.07.006, PMID: PubMed DOI
Matsuoka S., Ballif B. A., Smogorzewska A., Mcdonald E. R., 3rd, Hurov K. E., Luo J., et al. . (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166. doi: 10.1126/science.1140321, PMID: PubMed DOI
Metzger M. B., Pruneda J. N., Klevit R. E., Weissman A. M. (2014). RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta 1843, 47–60. doi: 10.1016/j.bbamcr.2013.05.026, PMID: PubMed DOI PMC
Middleton A. J., Budhidarmo R., Day C. L. (2014). Use of E2~ubiquitin conjugates for the characterization of ubiquitin transfer by RING E3 ligases such as the inhibitor of apoptosis proteins. Methods Enzymol. 545, 243–263. doi: 10.1016/B978-0-12-801430-1.00010-X, PMID: PubMed DOI
Mohtar M. A., Hernychova L., O'neill J. R., Lawrence M. L., Murray E., Vojtesek B., et al. . (2018). The sequence-specific peptide-binding activity of the protein sulfide isomerase AGR2 directs its stable binding to the oncogenic receptor EpCAM. Mol. Cell. Proteomics 17, 737–763. doi: 10.1074/mcp.RA118.000573, PMID: PubMed DOI PMC
Morelli X., Hupp T. (2012). Searching for the holy grail; protein-protein interaction analysis and modulation. EMBO Rep. 13, 877–879. doi: 10.1038/embor.2012.137, PMID: PubMed DOI PMC
Murray E., Mckenna E. O., Burch L. R., Dillon J., Langridge-Smith P., Kolch W., et al. . (2007). Microarray-formatted clinical biomarker assay development using peptide aptamers to anterior gradient-2. Biochemistry 46, 13742–13751. doi: 10.1021/bi7008739, PMID: PubMed DOI
Narayan V., Landre V., Ning J., Hernychova L., Muller P., Verma C., et al. . (2015). Protein-protein interactions modulate the docking-dependent E3-ubiquitin ligase activity of Carboxy-terminus of Hsc70-interacting protein (CHIP). Mol. Cell. Proteomics 14, 2973–2987. doi: 10.1074/mcp.M115.051169, PMID: PubMed DOI PMC
Rivier J., Mcclintock R. (1983). Reversed-phase high-performance liquid chromatography of insulins from different species. J. Chromatogr. 268, 112–119. doi: 10.1016/S0021-9673(01)95395-6, PMID: PubMed DOI
Robson A. F., Hupp T. R., Lickiss F., Ball K. L., Faulds K., Graham D. (2012). Nanosensing protein allostery using a bivalent mouse double minute two (MDM2) assay. Proc. Natl. Acad. Sci. U. S. A. 109, 8073–8078. doi: 10.1073/pnas.1116637109, PMID: PubMed DOI PMC
Saha A., Lewis S., Kleiger G., Kuhlman B., Deshaies R. J. (2011). Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 42, 75–83. doi: 10.1016/j.molcel.2011.03.016, PMID: PubMed DOI PMC
Scheffner M., Kumar S. (2014). Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim. Biophys. Acta 1843, 61–74. doi: 10.1016/j.bbamcr.2013.03.024, PMID: PubMed DOI
Shimizu H., Burch L. R., Smith A. J., Dornan D., Wallace M., Ball K. L., et al. . (2002). The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo. J. Biol. Chem. 277, 28446–28458. doi: 10.1074/jbc.M202296200, PMID: PubMed DOI
Sloper-Mould K. E., Jemc J. C., Pickart C. M., Hicke L. (2001). Distinct functional surface regions on ubiquitin. J. Biol. Chem. 276, 30483–30489. doi: 10.1074/jbc.M103248200, PMID: PubMed DOI
Smith G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317. doi: 10.1126/science.4001944, PMID: PubMed DOI
Stevens C., Lin Y., Harrison B., Burch L., Ridgway R. A., Sansom O., et al. . (2009). Peptide combinatorial libraries identify TSC2 as a death-associated protein kinase (DAPK) death domain-binding protein and reveal a stimulatory role for DAPK in mTORC1 signaling. J. Biol. Chem. 284, 334–344. doi: 10.1074/jbc.M805165200, PMID: PubMed DOI
Tompa P., Davey N. E., Gibson T. J., Babu M. M. (2014). A million peptide motifs for the molecular biologist. Mol. Cell 55, 161–169. doi: 10.1016/j.molcel.2014.05.032, PMID: PubMed DOI
Vassilev L. T., Vu B. T., Graves B., Carvajal D., Podlaski F., Filipovic Z., et al. . (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848. doi: 10.1126/science.1092472, PMID: PubMed DOI
Wallace M., Worrall E., Pettersson S., Hupp T. R., Ball K. L. (2006). Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol. Cell 23, 251–263. doi: 10.1016/j.molcel.2006.05.029, PMID: PubMed DOI
Wawrzynow B., Pettersson S., Zylicz A., Bramham J., Worrall E., Hupp T. R., et al. . (2009). A function for the RING finger domain in the allosteric control of MDM2 conformation and activity. J. Biol. Chem. 284, 11517–11530. doi: 10.1074/jbc.M809294200, PMID: PubMed DOI PMC
Wenzel D. M., Stoll K. E., Klevit R. E. (2011). E2s: structurally economical and functionally replete. Biochem. J. 433, 31–42. doi: 10.1042/BJ20100985, PMID: PubMed DOI PMC
Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., et al. . (1995). 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135–140. doi: 10.1007/BF00211777, PMID: PubMed DOI
Zhang Z., Marshall A. G. (1998). A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J. Am. Soc. Mass Spectrom. 9, 225–233. doi: 10.1016/S1044-0305(97)00284-5, PMID: PubMed DOI