Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers

. 2015 Jan 29 ; 5 () : 8106. [epub] 20150129

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25630432

It was previously believed that larger metal nanoparticles behave as tiny mirrors that are pushed by the light beam radiative force along the direction of beam propagation, without a chance to be confined. However, several groups have recently reported successful optical trapping of gold and silver particles as large as 250 nm. We offer a possible explanation based on the fact that metal nanoparticles naturally occur in various non-spherical shapes and their optical properties differ significantly due to changes in localized plasmon excitation. We demonstrate experimentally and support theoretically three-dimensional confinement of large gold nanoparticles in an optical trap based on very low numerical aperture optics. We showed theoretically that the unique properties of gold nanoprisms allow an increase of trapping force by an order of magnitude at certain aspect ratios. These results pave the way to spatial manipulation of plasmonic nanoparticles using an optical fibre, with interesting applications in biology and medicine.

Zobrazit více v PubMed

Lu X., Rycenga M., Skrabalak S. E., Wiley B. & Xia Y. Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem. 60, 167–192 (2009). PubMed

Bendix P. M., Nader S., Reihani S. & Oddershede L. B. Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano 4, 2256–2262 (2010). PubMed

Sanchot A. et al. Plasmonic Nanoparticle Networks for Light and Heat Concentration. ACS Nano 6, 3434–3440 (2012). PubMed

Baffou G. & Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser & Photon. Rev. 7, 171–187 (2013).

Ashkin A., Dziedzic J. M., Bjorkholm J. E. & Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986). PubMed

Moffitt J. R., Chemla Y. R., Smith S. B. & Bustamante C. Recent advances in optical tweezers. Ann. Rev. Biochem. 77, 205–228 (2008). PubMed

Jonáš A. & Zemánek P. Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electophoresis 29, 4813–4851 (2008). PubMed

Svoboda K. & Block S. M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994). PubMed

Hansen P. M., Bhatia V. K., Harrit N. & Oddershede L. Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Lett. 5, 1937–1942 (2005). PubMed

Pelton M. et al. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt. Lett. 31, 2075–2077 (2006). PubMed

Bosanac L., Aabo T., Bendix P. M. & Oddershede L. B. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett. 8, 1486–1491 (2008). PubMed

Dienerowitz M., Mazilu M. & Dholakia K. Optical manipulation of nanoparticles: a review. J. Nanophotonics 2, 021875:1–32 (2008).

Seol Y., Carpenter A. E. & Perkins T. T. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006). PubMed

Merabia S., Keblinski P., Joly L., Lewis L. J. & Barrat J.-L. Critical heat flux around strongly heated nanoparticles. Phys. Rev. E 79, 021404:1–4 (2009). PubMed

Ekici O. et al. Thermal analysis of gold nanorods heated with femtosecond laser pulses. J. Phys. D-Appl. Phys. 41, 185501 (2008). PubMed PMC

Chaumet P. & Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 25, 1065–1067 (2000). PubMed

Zapata I., Albaladejo S., Parrondo J. M. R., Saenz J. J. & Sols F. Deterministic Ratchet from Stationary Light Fields. Phys. Rev. Lett. 103, 130601 (2009). PubMed

Agayan R., Gittes F., Kopelman R. & Schmidt C. Optical trapping near resonance absorption. Appl. Opt. 41, 2318–2327 (2002). PubMed

Arias-González J. R. & Nieto-Vesperinas M. Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. J. Opt. Soc. Am. A 20, 1201 (2003). PubMed

Trojek J., Chvátal L. & Zemánek P. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. J. Opt. Soc. Am. A 29, 1224–1236 (2012). PubMed

Dienerowitz M., Mazilu M., Reece P. J., Krauss T. F. & Dholakia K. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express 16, 4991–4999 (2008). PubMed

Toussaint J. K. C. et al. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. Opt. Express 15, 12017–12029 (2007). PubMed

Messina E. et al. Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. ACS Nano 5, 905–913 (2011). PubMed

Čižmár T. & Dholakia K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011). PubMed

Čižmár T. & Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging. Nature Commun. 3, 1027:1–9 (2012). PubMed PMC

Wadsworth W. et al. Very high numerical aperture fibers. Photonics Technology Letters, IEEE 16, 843–845 (2004).

Čižmár T., Brzobohatý O., Dholakia K. & Zemánek P. The holographic optical micro-manipulation system based on counter-propagating beams. Las. Phys. Lett. 8, 50–56 (2011).

Čižmár T., Mazilu M. & Dholakia K. In situ wavefront correction and its application to micromanipulation. Nature Phot. 4, 388–394 (2010).

Berg-Sørensen K. & Flyvbjerg H. Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594–612 (2004).

Gittes F. & Schmidt C. Signals and noise in micromechanical measurements. Methods Cell. Biol. 55, 129–156 (1998). PubMed

van der Horst A. & Forde N. R. Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth. Opt. Express 18, 7670–7677 (2010). PubMed

Harada Y. & Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124, 529–541 (1996).

Gouesbet G. & Gréhan G. Generalized Lorenz-Mie Theories (Springer, Berlin, Heidelberg, 2011).

Brzobohatý O., Šiler M., Ježek J., Jákl P. & Zemánek P. Optical manipulation of aerosol droplets using a holographic dual and single beam trap. Opt. Lett. 38, 4601–4604 (2013). PubMed

Kyrsting A., Bendix P. M. & Oddershede L. B. Mapping 3D Focal Intensity Exposes the Stable Trapping Positions of Single Nanoparticles. Nano Lett. 13, 31–35 (2013). PubMed

Saija R., Denti P., Borghese F., Maragò O. M. & Iatí M. A. Optical trapping calculations for metal nanoparticles. comparison with experimental data for Au and Ag spheres. Opt. Express 17, 10231–10241 (2009). PubMed

Lapotko D. Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. Opt. Express 17, 2538–2556 (2009). PubMed

Fang Z. et al. Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Lett. 13, 1736–1742 (2013). PubMed PMC

Ma H., Bendix P. M. & Oddershede L. B. Large-Scale Orientation Dependent Heating from a Single Irradiated Gold Nanorod. Nano Lett. 12, 3954–3960 (2012). PubMed

Piazza R. & Parola A. Thermophoresis in colloidal suspensions. J. Phys.-Condes. Matter 20, 153102 (2008).

Waggener W. C. Absorbance of liquid water and deuterium oxide between 0.6 and 1.8 microns. Anal. Chem. 30, 1569–1570 (1958).

Wiley B. J. et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110, 15666–15675 (2006). PubMed

Borghese F., Denti P., Saija R., Iatí M. A. & Maragò O. M. Radiation torque and force on optically trapped linear nanostructures. Phys. Rev. Lett. 100, 163903 (2008). PubMed

Simpson S. H. & Hanna S. Optical trapping of spheroidal particles in Gaussian beams. J. Opt. Soc. Am. A 24, 430 (2007). PubMed

Čižmár T. et al. Optical sorting and detection of sub-micron objects in a motional standing wave. Phys. Rev. B 74, 035105:1–6 (2006).

Ploschner M., Čižmár T., Mazilu M., Di Falco A. & Dholakia K. Bidirectional Optical Sorting of Gold Nanoparticles. Nano Lett. 12, 1923–1927 (2014). PubMed

Draine B. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J. 333, 848–872 (1988).

Bohren C. F. & Huffman D. R. Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).

Barton J. P. & Alexander D. R. & Schaub S. A. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys. 66, 4594–4602 (1989).

Richards B. & Wolf E. Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system. Proc. Royal Soc. London A 253, 358–379 (1959).

Stamnes J. J. Waves in focal regions. (IOP Publishing limited, Bristol, 1986).

Palik E. & Ghosh G. Handbook of optical constants of solids. v. 3 (Academic Press, OrlandoFlorida, 1998).

Yurkin M. A. & Hoekstra A. G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectr. & Rad. Transfer 112, 2234–2247 (2011).

Draine B. T. & Flatau P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994).

Hoekstra A. G., Frijlink M., Waters L. B. F. M. & Sloot P. M. A. Radiation forces in the discrete-dipole approximation. J. Opt. Soc. Am. A 18, 1944–1953 (2001). PubMed

Karásek V., Brzobohatý O. & Zemánek P. Longitudinal optical binding of several spherical particles studied by the coupled dipole method. J. Opt. A: Pure Appl. Opt. 11, 034009 (2009).

Myroshnychenko V. et al. Plasmon spectroscopy and imaging of individual gold nanodecahedra: A combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. Nano Lett. 12, 4172–4180 (2012). PubMed

Das P. & Chini T. K. Spectroscopy and imaging of plasmonic modes over a single decahedron gold nanoparticle: A combined experimental and numerical study. J. Phys. Chem. C 116, 25969–25976 (2012).

Rodriguez-Fernandez J. et al. Spectroscopy, imaging, and modeling of individual gold decahedra. J. Phys. Chem. C 113, 18623–18631 (2009).

Perrin F. Mouvement brownien d'un ellipsoide - I. dispersion dielectrique pour des molecules ellipsoidales. Journal de Physique et le Radium 5, 497–511 (1934).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...