Changes in Phenotypes and DNA Methylation of In Vitro Aging Sperm in Common Carp Cyprinus carpio
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LRI CENAKVA, LM2018099
Ministerstvo Školství, Mládeže a Tělovýchovy
Biodiversity (CZ.02.1.01./0.0/0.0/16_025/0007370)
Ministerstvo Školství, Mládeže a Tělovýchovy
CESNET (LM2015042)
Ministerstvo Školství, Mládeže a Tělovýchovy
CERIT-Scientific Cloud (LM2015085)
Ministerstvo Školství, Mládeže a Tělovýchovy
20-01251S
Grantová Agentura České Republiky
097/2019/Z, 037/2020/Z
Jihočeská Univerzita v Českých Budějovicích
QK21010141
the National Agency for Agriculture Research, Czech Republic
PubMed
34073009
PubMed Central
PMC8198300
DOI
10.3390/ijms22115925
PII: ijms22115925
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, common carp, epigenetics, fertilization, fish, milt, sperm aging, sperm quality, sperm storage,
- MeSH
- kapři genetika růst a vývoj MeSH
- metylace DNA genetika MeSH
- spermie metabolismus patologie MeSH
- stárnutí genetika patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The purpose of the current study was to analyze phenotypic and functional characteristics of common carp (Cyprinus carpio) spermatozoa during in vitro aging and to investigate whether global DNA methylation is affected by sperm aging. Milt was collected from five individual males, stored in vitro on ice in a refrigerator for up to 96 h post stripping (HPS) and used to fertilize eggs with intervals of 1, 24 and 96 h. Computer-assisted sperm analysis and a S3e Cell Sorter was employed to determine the spermatozoa phenotypic characteristics (motility, velocity, concentration and viability). In addition, pH and osmolality of the seminal fluid and the capacity of the spermatozoa to fertilize, hatching rate and health of the resulting embryos were examined at different aging times. Whole-genome bisulfite sequencing was used to compare the global and gene-specific DNA methylation in fresh and aged spermatozoa. The results demonstrated that spermatozoa aging in common carp significantly affects their performance and thus the success of artificial fertilization. The methylation level at the cytosine-phosphate-guanine (CpG) sites increased significantly with 24 HPS spermatozoa compared to the fresh group at 1 HPS and then decreased significantly at 96 HPS. A more detailed investigation of gene specific differences in the DNA methylation was hindered by incomplete annotation of the C. carpio genome in the public databases.
Zobrazit více v PubMed
Babiak I., Ottesen O., Rudolfsen G., Johnsen S. Quantitative characteristics of Atlantic halibut, Hippoglossus hippoglossus L., semen throughout the reproductive season. Theriogenology. 2006;65:1587–1604. doi: 10.1016/j.theriogenology.2005.09.004. PubMed DOI
Risopatrón J., Merino O., Cheuquemán C., Figueroa E., Sánchez R., Farías J.G., Valdebenito I. Effect of the age of broodstock males on sperm function during cold storage in the trout (Oncorhynchus mykiss) Andrologia. 2018;50:e12857. doi: 10.1111/and.12857. PubMed DOI
Gasparini C., Dosselli R., Evans J.P. Sperm storage by males causes changes in sperm phenotype and influences the reproductive fitness of males and their sons. Evol. Lett. 2017;1:16–25. doi: 10.1002/evl3.2. PubMed DOI PMC
Zajitschek S., Hotzy C., Zajitschek F., Immler S. Short-Term variation in sperm competition causes sperm-mediated epigenetic effects on early offspring performance in the zebrafish. Proc. R. Soc. B Biol. Sci. 2014;281:20140422. doi: 10.1098/rspb.2014.0422. PubMed DOI PMC
Shaliutina A., Hulak M., Dzuyba B., Linhart O. Spermatozoa motility and variation in the seminal plasma proteome of Eurasian perch (Perca fluviatilis) during the reproductive season. Mol. Reprod. Dev. 2012;79:879–887. doi: 10.1002/mrd.22126. PubMed DOI
Shaliutina A., Hulak M., Gazo I., Linhartova P., Linhart O. Effect of short-term storage on quality parameters, DNA integrity, and oxidative stress in Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon sperm. Anim. Reprod. Sci. 2013;139:127–135. doi: 10.1016/j.anireprosci.2013.03.006. PubMed DOI
Trigo P., Merino O., Figueroa E., Valdebenito I., Sánchez R., Risopatrón J. Effect of short-term semen storage in salmon (Oncorhynchus mykiss) on sperm functional parameters evaluated by flow cytometry. Andrologia. 2015;47:407–411. doi: 10.1111/and.12276. PubMed DOI
Contreras P., Ulloa P., Merino O.P., Valdebenito I., Figueroa E., Farías J.G., Risopatrón J. Effect of short-term storage on sperm function in Patagonian blenny (Eleginops maclovinus) sperm. Aquaculture. 2017;481:58–63. doi: 10.1016/j.aquaculture.2017.08.022. DOI
Xin M.M., Sterba J., Shaliutina-Kolesova A., Dzyuba B., Lieskovska J., Boryshpolets S., Siddique M.A.M., Kholodnyy V., Lebeda I., Linhart O. Protective role of antifreeze proteins on sterlet (Acipenser ruthenus) sperm during cryopreservation. Fish Physiol. Biochem. 2018;44:1527–1533. doi: 10.1007/s10695-018-0538-5. PubMed DOI
Xin M.M., Cheng Y., Rodina M., Tučková V., Shelton W.L., Linhart O. Improving motility and fertilization capacity of low-quality sperm of sterlet Acipenser ruthenus during storage. Theriogenology. 2020;156:90–96. doi: 10.1016/j.theriogenology.2020.07.004. PubMed DOI
Harman D. The free radical theory of aging. Antioxid. Redox Signal. 2003;5:557–561. doi: 10.1089/152308603770310202. PubMed DOI
Desai N., Sabanegh E., Kim T., Agarwal A. Free radical theory of aging: Implications in male infertility. Urology. 2010;75:14–19. doi: 10.1016/j.urology.2009.05.025. PubMed DOI
Samarin A.M., Ostbye T.K.K., Ruyter B., Sampels S., Burkina V., Blecha M., Gela D., Policar T. Alteration of mRNA abundance, oxidation products and antioxidant enzyme activities during oocyte ageing in common carp Cyprinus carpio. PLoS ONE. 2019;14:e0212694. doi: 10.1111/are.13552. PubMed DOI PMC
Crary-Dooley F.K., Tam M.E., Dunaway K.W., Hertz-Picciotto I., Schmidt R.J., LaSalle J.M. A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics. 2017;12:206–214. doi: 10.1080/15592294.2016.1276680. PubMed DOI PMC
Gao L.F., Emperle M., Guo Y.R., Grimm S., Ren W.D., Adam S., Uryu H., Zhang Z.M., Chen D.L., Yin J.K., et al. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat. Commun. 2020;11:3355. doi: 10.1038/s41467-020-17109-4. PubMed DOI PMC
Woods L.C., Li Y.K., Ding Y., Liu J.N., Reading B.J., Fuller S.A., Song J.Z. DNA methylation profiles correlated to striped bass sperm fertility. BMC Genom. 2018;19:244. doi: 10.1186/s12864-018-4548-6. PubMed DOI PMC
Montjean D., Zini A., Ravel C., Belloc S., Dalleac A., Copin H., Boyer P., Mcelreavey K., Benkhalifa M. Sperm global DNA methylation level: Association with semen parameters and genome integrity. Andrology. 2015;3:235–240. doi: 10.1111/andr.12001. PubMed DOI
Zhao W.L., Gu N.H., Li Z.Z., Wang G.S., Cheng C.Y., Sun F. Autism-Like behaviors and abnormality of glucose metabolism in offspring derived from aging males with epigenetically modified sperm. Aging. 2020;12:19766–19784. doi: 10.18632/aging.104061. PubMed DOI PMC
Huypens P., Sass S., Wu M., Dyckhoff D., Tschöp M., Theis F., Marschall S., De Angelis M.H., Beckers J. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Obstet. Gynecol. Surv. 2016;71:719–720. doi: 10.1097/01.ogx.0000511202.23878.e3. PubMed DOI
Watkins A.J., Dias I., Tsuro H., Allen D., Emes R.D., Moreton J., Wilson R., Ingram R.J.M., Sinclair K.D. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl. Acad. Sci. USA. 2018;115:10064–10069. doi: 10.1073/pnas.1806333115. PubMed DOI PMC
Potabattula R., Dittrich M., Schorsch M., Hahn T., Haaf T., EI Hajj N. Male obesity effects on sperm and next-generation cord blood DNA methylation. PLoS ONE. 2019;14:e0218615. doi: 10.1371/journal.pone.0218615. PubMed DOI PMC
Kläver R., Bleiziffer A., Redmann K., Mallidis C., Kliesch S., Gromoll J. Routine cryopreservation of spermatozoa is safe-Evidence from the DNA methylation pattern of nine spermatozoa genes. J. Assist. Reprod. Genet. 2012;29:943–950. doi: 10.1007/s10815-012-9813-z. PubMed DOI PMC
Milekic M.H., Xin Y., O’Donnell A., Kumar K.K., Bradley-Moore M., Malaspina D., Moore H., Brunner D., Ge Y., Edwards J., et al. Age-Related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol. Psychiatry. 2015;20:995–1001. doi: 10.1038/mp.2014.84. PubMed DOI
Alavi S.M.H., Cosson J., Bondarenko O., Linhart O. Sperm motility in fishes: (III) diversity of regulatory signals from membrane to the axoneme. Theriogenology. 2019;136:143–165. doi: 10.1016/j.theriogenology.2019.06.038. PubMed DOI
Alavi S.M.H., Linhart O., Coward K., Rodina M. Implication for aquaculture management. In: Alavi S.M.H., Cosson J., Coward K., Rafiee G., editors. Fish Spermatology. Alpha Science Ltd.; Oxford, UK: 2008. pp. 397–460.
Billard R., Cosson J., Perchec G., Linhart O. Biology of sperm and artificial reproduction in carp. Aquaculture. 1995;129:95–112. doi: 10.1016/0044-8486(94)00231-C. DOI
Linhart O., Kudo S., Billard R., Slechta V., Mikodina E.V. Morphology, composition and fertilization of carp eggs: A review. Aquaculture. 1995;129:75–93. doi: 10.1016/0044-8486(94)00230-L. DOI
Stoss J., Holtz W. Successful storage of chilled rainbow trout (Salmo gairdneri) spermatozoa for up to 34 days. Aquaculture. 1983;31:269–274. doi: 10.1016/0044-8486(83)90318-6. DOI
Sadeghi S., Carles J.N., Silvestre S.M.A. Effect of the activation media with different osmolality and cool storage on spermatozoa motility parameters over time in zebrafish, Danio rerio. Turk. J. Fish. Aquat. Sci. 2017;17:111–120. doi: 10.4194/1303-2712-v17_1_13. DOI
Rurangwa E., Kime D.E., Ollevier F., Nash J.P. The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture. 2004;234:1–28. doi: 10.1016/j.aquaculture.2003.12.006. DOI
Dietrich M.A., Judycka S., Słowińska M., Kodzik N., Ciereszko A. Short-Term storage-induced changes in the proteome of carp (Cyprinus carpio L.) spermatozoa. Aquaculture. 2021;530:735784. doi: 10.1016/j.aquaculture.2020.735784. DOI
Cosson J., Billard R., Cibert C., Dreanno C., Suquet M. Ionic factors regulating the motility of fish sperm. In: Gagnon C., editor. The Male Gamete: From Basic Science to Clinical Applications. Cache River Press; Vienna, Austria: 1999. pp. 161–186.
Gallego V., Pérez L., Asturiano J.F., Yoshida M. Relationship between spermatozoa motility parameters, sperm/egg ratio, and fertilization and hatching rates in pufferfish (Takifugu niphobles) Aquaculture. 2013;416:238–243. doi: 10.1016/j.aquaculture.2013.08.035. DOI
Ottesen O.H., Babiak I., Dahle G. Sperm competition and fertilization success of Atlantic halibut (Hippoglossus hippoglossus L.) Aquaculture. 2009;286:240–245. doi: 10.1016/j.aquaculture.2008.09.018. DOI
Linhart O., Rodina M., Cosson J. Cryopreservation of sperm in common carp Cyprinus carpio: Sperm motility and hatching success of embryos. Cryobiology. 2000;41:241–250. doi: 10.1006/cryo.2000.2284. PubMed DOI
Poupard G.P., Paxion C., Cosson J., Jeulin C., Fierville F., Billard R. Initiation of carp spermatozoa motility and early ATP reduction after milt contamination by urine. Aquaculture. 1998;160:317–328. doi: 10.1016/S0044-8486(97)00301-3. DOI
Hassan M.M., Nahiduzzaman M., Al Mamun S.N., Taher M.A., Hossain M.A.R. Fertilization by refrigerator stored sperm of the Indian major carp, Labeo calbasu (Hamilton, 1822) Aquac. Res. 2013;45:150–158. doi: 10.1111/j.1365-2109.2012.03214.x. DOI
Perchec G., Jeulin C., Cosson J., Andre F., Billard R. Relationship between sperm ATP content and motility of carp spermatozoa. J. Cell Sci. 1995;108:747–753. doi: 10.1242/jcs.108.2.747. PubMed DOI
Rahi D., Dzyuba B., Xin M.M., Cheng Y., Dzyuba V. Energy pathways associated with sustained spermatozoon motility in the endangered Siberian sturgeon Acipenser baerii. J. Fish Biol. 2020;97:435–443. doi: 10.1111/jfb.14382. PubMed DOI
Aitken R.J., Baker M.A. Oxidative stress, sperm survival and fertility control. Mol. Cell. Endocrinol. 2006;250:66–69. doi: 10.1016/j.mce.2005.12.026. PubMed DOI
Lahnsteiner F., Berger B., Weismann T., Patzner R.A. Motility of spermatozoa of Alburnus alburnus (Cyprinidae) and its relationship to seminal plasma composition and sperm metabolism. Fish Physiol. Biochem. 1996;15:167–179. doi: 10.1007/BF01875596. PubMed DOI
Taborsky M. Sperm competition in fish: “Bourgeois” males and parasitic spawning. Trends Ecol. Evol. 1998;13:222–227. doi: 10.1016/S0169-5347(97)01318-9. PubMed DOI
Horvath L., Tamas G., Seagrave C. Carp and Pond Fish Culture. Fishing News Books; Oxford, UK: 1992. p. 155.
Billard R., Bieniarz K., Popek W., Epler P., Saad A. Observations on a possible pheromonal stimulation of milt production in carp (Cyprinus carpio L.) Aquaculture. 1989;77:387–392. doi: 10.1016/0044-8486(89)90222-6. DOI
Zhukinskiy V.N., Alekseenko V.R. Semen quality in common carp, Cyprinus carpio, and white amur, Ctenopharyngodon idella (Cyprinidae) in different periods of the spawning season and as influenced by extraction methods. J. Ichthyol. 1983;23:124–133.
Weil C., Fostier A., Billard R. Aquaculture of Cyprinids. INRA; Paris, France: 1986. Induced spawning (ovulation and spermiation) in carp and related species; pp. 119–137.
Courtois F., Billard R., Takashima F. Stimulation of spermiation following repeated injection of carp pituitary homogenates in the carp. Nippon Suisan Gakkaishi. 1986;52:995–997. doi: 10.2331/suisan.52.995. DOI
Saad A., Billard R. Spermatozoa production and volume of semen collected after hormonal stimulation in the carp, Cyprinus carpio. Aquaculture. 1987;65:67–77. doi: 10.1016/0044-8486(87)90271-7. DOI
Anway M.D., Cupp A.S., Uzumcu M., Skinner M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–1469. doi: 10.1126/science.1108190. PubMed DOI
Sujit K.M., Sarkar S., Singh V., Pandey R., Agrawal N.K., Trivedi S., Singh K., Gupta G., Rajender S. Genome-Wide differential methylation analyses identifies methylation signatures of male infertility. Hum. Reprod. 2018;33:2256–2267. doi: 10.1093/humrep/dey319. PubMed DOI
Jenkins T.G., Aston K.I., Pflueger C., Cairns B.R., Carrell D.T. Age-Associated sperm DNA methylation alterations: Possible implications in offspring disease susceptibility. PLoS Genet. 2014;10:e1004458. doi: 10.1371/journal.pgen.1004458. PubMed DOI PMC
Takeda K., Kobayashi E., Nishino K., Imai A., Adachi H., Hoshino Y., Iwao K., Akagi S., Kaneda M., Watanabe S. Age-related changes in DNA methylation levels at cpg sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combined bisulfite restriction analysis. J. Reprod. Dev. 2019;65:305–312. doi: 10.1262/jrd.2018-146. PubMed DOI PMC
Luján S., Caroppo E., Niederberger C., Arce J.C., Sadler-Riggleman I., Beck D., Nilsson E., Skinner M.K. Sperm DNA methylation epimutation biomarkers for male infertility and FSH therapeutic responsiveness. Sci. Rep. 2019;9:16786. doi: 10.1038/s41598-019-52903-1. PubMed DOI PMC
Potabattula R., Zacchini F., Ptak G.E., Dittrich M., Müller T., Hajj N.E., Hahn T., Drummer C., Behr R., Lucas-Hahn A., et al. Increasing methylation of sperm rDNA and other repetitive elements in the aging male mammalian germline. Aging Cell. 2020;19:e13181. doi: 10.1111/acel.13181. PubMed DOI PMC
Oluwayiose O.A., Wu H.T., Saddiki H., Whitcomb B.W., Balzer L.B., Brandon N., Suvorov A., Tayyab R., Sites C.K., Hill L., et al. Sperm DNA methylation mediates the association of male age on reproductive outcomes among couples undergoing infertility treatment. Sci. Rep. 2021;11:3216. doi: 10.1038/s41598-020-80857-2. PubMed DOI PMC
Li P., Dzyuba B., Hulak M., Rodina M., Boryshpolets S., Li Z.H., Linhart O. Percoll gradient separation of cryopreserved common carp spermatozoa to obtain a fraction with higher motility, velocity and membrane integrity. Theriogenology. 2010;74:1356–1361. doi: 10.1016/j.theriogenology.2010.06.005. PubMed DOI
Guerra S.M., Valcarce D.G., Cabrita E., Robles V. Analysis of transcripts in gilthead seabream sperm and zebrafish testicular cells: MRNA profile as a predictor of gamete quality. Aquaculture. 2013;406–407:28–33. doi: 10.1016/j.aquaculture.2013.04.032. DOI
Cabrita E., Martínez-Páramo S., Gavaia P.J., Riesco M.F., Valcarce D.G., Sarasquete C., Herráez M.P., Robles V. Factors enhancing fish sperm quality and emerging tools for sperm analysis. Aquaculture. 2014;432:389–401. doi: 10.1016/j.aquaculture.2014.04.034. DOI
Riesco M.F., Valcarce D.G., Martínez-Vázquez J.M., Robles V. Effect of low sperm quality on progeny: A study on zebrafish as model species. Sci. Rep. 2019;9:11192. doi: 10.1038/s41598-019-47702-7. PubMed DOI PMC
Webster K.A., Schach U., Ordaz A., Steinfeld J.S., Draper B.W., Siegfried K.R. Dmrt1 is necessary for male sexual development in zebrafish. Dev. Biol. 2017;422:33–46. doi: 10.1016/j.ydbio.2016.12.008. PubMed DOI PMC
Grunewald S., Paasch U., Glander H.J., Anderegg U. Mature human spermatozoa do not transcribe novel RNA. Andrologia. 2005;37:69–71. doi: 10.1111/j.1439-0272.2005.00656.x. PubMed DOI
Bansal S.K., Gupta N., Sankhwar S.N., Rajender S. Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS ONE. 2015;10:e0127007. doi: 10.1371/journal.pone.0127007. PubMed DOI PMC
Uysal F., Akkoyunlu G., Ozturk S. DNA methyltransferases exhibit dynamic expression during spermatogenesis. Reprod. Biomed. Online. 2016;33:690–702. doi: 10.1016/j.rbmo.2016.08.022. PubMed DOI
Kamiński P., Baszyński J., Jerzak I., Kavanagh B.P., Nowacka-Chiari E., Polanin M., Szymański M., Woźniak A., Kozera W. External and genetic conditions determining male infertility. Int. J. Mol. Sci. 2020;21:5274. doi: 10.3390/ijms21155274. PubMed DOI PMC
Jan S.Z., Vormer T.L., Jongejan A., Röling M.D., Silber S.J., de Rooij D.G., Hamer G., Repping S., van Pelt A.M.M. Unraveling transcriptome dynamics in human spermatogenesis. Development. 2017;144:3659–3673. doi: 10.1242/dev.152413. PubMed DOI PMC
Prakash M.A., Kumaresan A., Sinha M.K., Kamaraj E., Mohanty T.K., Datta T.K., Morrell J.M. RNA-Seq analysis reveals functionally relevant coding and non-coding RNAs in crossbred bull spermatozoa. Anim. Reprod. Sci. 2020;222:106621. doi: 10.1016/j.anireprosci.2020.106621. PubMed DOI PMC
Montjean D., De La Grange P., Gentien D., Rapinat A., Belloc S., Cohen-Bacrie P., Menezo Y., Benkhalifa M. Sperm transcriptome profiling in oligozoospermia. J. Assist. Reprod. Genet. 2012;29:3–10. doi: 10.1007/s10815-011-9644-3. PubMed DOI PMC
Li C.J., Zhou X. Gene transcripts in spermatozoa: Markers of male infertility. Clin. Chim. Acta. 2012;413:1035–1038. doi: 10.1016/j.cca.2012.03.002. PubMed DOI
Joshi M., Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod. Biol. Endocrinol. 2020;18:103–121. doi: 10.1186/s12958-020-00660-6. PubMed DOI PMC
Riesco M.F., Robles V. Cryopreservation causes genetic and epigenetic changes in zebrafish genital ridges. PLoS ONE. 2013;8:e67614. doi: 10.1371/journal.pone.0067614. PubMed DOI PMC
Linhart O., Rodina M., Kašpar V. Common carp (Cyprinus carpio Linneaus, 1758) male fertilization potency with secure number of spermatozoa per ova. J. Appl. Ichthyol. 2015;31:169–173. doi: 10.1111/jai.12736. DOI
Linhart O., Cheng Y., Xin M.M., Rodina M., Tučková V., Shelton W.L., Kašpar V. Standardization of egg activation and fertilization in sterlet (Acipenser ruthenus) Aquac. Rep. 2020;17:100381. doi: 10.1016/j.aqrep.2020.100381. PubMed DOI
Horokhovatskyi Y., Dietrich M.A., Lebeda I., Fedorov P., Rodina M., Dzyuba B. Cryopreservation effects on a viable sperm sterlet (Acipenser ruthenus) subpopulation obtained by a Percoll density gradient method. PLoS ONE. 2018;13:e0202514. doi: 10.1371/journal.pone.0202514. PubMed DOI PMC
Cheng Y., Xin M.M., Gela D., Rodina M., Tučková V., Kašpar V., Siddique M.A.M., Shelton W.L., Linhart O. Optimization of sterlet (Acipenser ruthenus) egg incubation. Anim. Reprod. Sci. 2020;215:106334. doi: 10.1016/j.anireprosci.2020.106334. PubMed DOI
Andrews S. A Quality Control Tool for High Throughput Sequence Data. [(accessed on 24 November 2010)];2010 Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Krueger F., Andrews S.R. Bismark: A flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics. 2011;27:1571–1572. doi: 10.1093/bioinformatics/btr167. PubMed DOI PMC
Condon D.E., Tran P.V., Lien Y.C., Schug J., Georgieff M.K., Simmons R.A., Won K.J. Defiant: (DMRs: Easy, fast, identification and ANnoTation) identifies differentially Methylated regions from iron-deficient rat hippocampus. BMC Bioinform. 2018;19:31–43. doi: 10.1186/s12859-018-2037-1. PubMed DOI PMC
Jones P., Binns D., Chang H.Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., et al. InterProScan 5: Genome-Scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Klopfenstein D.V., Zhang L., Pedersen B.S., Ramírez F., Vesztrocy A.W., Naldi A., Mungall C.J., Yunes J.M., Botvinnik O., Weigel M., et al. GOATOOLS: A python library for gene ontology analyses. Sci. Rep. 2018;8:10872. doi: 10.1038/s41598-018-28948-z. PubMed DOI PMC
Core R Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 12 December 2019)]. Available online: https://www.R-project.org.