Cryopreservation effects on a viable sperm sterlet (Acipenser ruthenus) subpopulation obtained by a Percoll density gradient method

. 2018 ; 13 (8) : e0202514. [epub] 20180816

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30114243

In many fish species, sperm cryopreservation has deleterious effects and leads to a significant decrease in spermatozoa viability. However, the effect of cryopreservation on sperm cells that survive this process and are still viable is not fully understood. The objective of this study was to compare the viability and proteomes of fresh and cryopreserved sterlet (Acipenser ruthenus) sperm samples before and after live-dead cell separation using Percoll density gradient centrifugation. Both fresh and cryopreserved sperm samples were divided into two groups (with or without application of Percoll separation). At each step of the experiment, sperm quality was evaluated by video microscopy combined with integrated computer-assisted sperm analysis software and flow cytometry for live-dead sperm viability analysis. Sperm motility and the percentage of live cells were reduced in the cryopreserved group compared to the fresh group from 89% to 33% for percentage of motility and from 96% to 70% for live cells. Straight line velocity and linearity of track were significantly lower in cryopreserved samples than in those separated by Percoll before and after cryopreservation. However, the percentages of motile and live spermatozoa were higher than 90% in samples subjected to Percoll separation. Proteomic analysis of spermatozoa by two-dimensional differences in-gel electrophoresis coupled with matrix-assisted laser-desorption/ionization time-of-flight/time-of-flight mass spectrometry revealed that 20 protein spot abundances underwent significant changes in cryopreserved samples compared to fresh ones. However, only one protein spot was significantly altered when samples before and after cryopreservation followed by Percoll separation were compared. Thus, the results of this study show that cryopreservation leads to minimal proteomic changes in the spermatozoa population, retaining high motility and viability parameters. The results also suggest that global differences in protein profiles between unselected fresh and cryopreserved samples are mainly due to protein loss or changes in the lethal and sublethal damaged cell subpopulations.

Zobrazit více v PubMed

Bronzi P, Rosenthal H, Gessner J. Global sturgeon aquaculture production: an overview. Journal of Applied Ichthyology. 2011;27(2):169–75. 10.1111/j.1439-0426.2011.01757.x DOI

Cabrita E, Sarasquete C, Martínez-Páramo S, Robles V, Beirão J, Pérez-Cerezales S, et al. Cryopreservation of fish sperm: applications and perspectives. Journal of Applied Ichthyology. 2010;26(5):623–35. 10.1111/j.1439-0426.2010.01556.x DOI

Medeiros CMO, Forell F, Oliveira ATD, Rodrigues JL. Current status of sperm cryopreservation: why isn't it better? Theriogenology. 2002;57(1):327–44. 10.1016/S0093-691X(01)00674-4 PubMed DOI

Glogowski J, Kolman R, Szczepkowski M, Horváth Á, Urbányi B, Sieczyński P, et al. Fertilization rate of Siberian sturgeon (Acipenser baeri, Brandt) milt cryopreserved with methanol. Aquaculture. 2002;211(1–4):367–73. 10.1016/S0044-8486(02)00003-0 DOI

Kopeika E, Kopeika J, Zhang T. Cryopreservation of Fish Sperm In: Day JG, Stacey GN, editors. Cryopreservation and Freeze-Drying Protocols. 368 Totowa, New Jersey: Humana Press; 2007. p. 203–17. PubMed

Asturiano JF, Marco-Jimenez F, Penaranda DS, Garzon DL, Perez L, Vicente JS, et al. Effect of sperm cryopreservation on the European eel sperm viability and spermatozoa morphology. Reproduction in Domestic Animals. 2006;42(2):162–6. 10.1111/j.1439-0531.2006.00746.x PubMed DOI

Mazur P, Leibo SP, Chu EHY. A two-factor hypothesis of freezing injury: Evidence from Chinese hamster tissue-culture cells. Experimental Cell Research. 1972;71(2):345–55. 10.1016/0014-4827(72)90303-5 PubMed DOI

Seki S, Mazur P. Kinetics and activation energy of recrystallization of intracellular ice in mouse oocytes subjected to interrupted rapid cooling. Cryobiology. 2008;56(3):171–80. 10.1016/j.cryobiol.2008.02.001 PubMed DOI PMC

Zilli L, Schiavone R, Zonno V, Storelli C, Vilella S. Evaluation of DNA damage in Dicentrarchus labrax sperm following cryopreservation. Cryobiology. 2003;47(3):227–35. 10.1016/j.cryobiol.2003.10.002 PubMed DOI

Cabrita E, Robles V, Rebordinos L, Sarasquete C, Herráez MP. Evaluation of DNA damage in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) cryopreserved sperm. Cryobiology. 2005;50(2):144–53. 10.1016/j.cryobiol.2004.12.003 PubMed DOI

Li P, Hulak M, Koubek P, Sulc M, Dzyuba B, Boryshpolets S, et al. Ice-age endurance: the effects of cryopreservation on proteins of sperm of common carp, Cyprinus carpio. Theriogenology. 2010;74:413–23. 10.1016/j.theriogenology.2010.02.024 PubMed DOI

Lessard C, Parent S, Leclerc P, Bailey J, Sullivan R. Cryopreservation alters the levels of the bull sperm surface protein P25b. Journal of Andrology. 2000;21:700–7. 10.1002/j.1939-4640.2000.tb02138.x PubMed DOI

Holt WV. Basic aspects of frozen storage of semen. Animal Reproduction Science. 2000;62(1):3–22. 10.1016/S0378-4320(00)00152-4 PubMed DOI

Horokhovatskyi Y, Sampels S, Cosson J, Linhart O, Rodina M, Fedorov P, et al. Lipid composition in common carp (Cyprinus carpio) sperm possessing different cryoresistance. Cryobiology. 2016;73(2):282–5. 10.1016/j.cryobiol.2016.08.005 PubMed DOI

Mortimer D, Templeton AA. Sperm transport in the human female reproductive tract in relation to semen analysis characteristics and time of ovulation. Journal of Reproduction and Fertility. 1982;64:401–8. PubMed

Henkel R, Schill WB. Sperm preparation for ART. Reproductive biology and endocrinology. 2003;1:108–. 10.1186/1477-7827-1-108 PubMed PMID: PMC293422. PubMed DOI PMC

Ilaria N. Sperm Preparation Techniques for Artificial Insemination—Comparison of sperm Washing, Swim Up, and Density Gradient Centrifugation Methods In: Manafi M, editor. Artificial insemination in farm animals. Rijeka, Croatia: InTech; 2011. p. 115–22.

Beydola T, Sharma RK, Agarwal A. Sperm preparation and selection techniques In: Botros R, editor. Medical and surgical management of male Infertility 1. Philadelphia: Jaypee Brothers Medical Publishers; 2014. p. 244–51.

Fleming S, Aitken RJ. Electrophoretic sperm separation In: Nagy Z, Varghese A, Agarwal A, editors. Practical manual of in vitro fertilization. New York: Springer; 2012. p. 259–63.

Cosson J. The Ionic and Osmotic Factors Controlling Motility of Fish Spermatozoa. Aquaculture International. 2004;12(1):69–85. 10.1023/B:AQUI.0000017189.44263.bc DOI

Valcarce DG, Herráez MP, Chereguini O, Rodríguez C, Robles V. Selection of nonapoptotic sperm by magnetic-activated cell sorting in Senegalese sole (Solea senegalensis). Theriogenology. 2016;86(5):1195–202. 10.1016/j.theriogenology.2016.04.010 PubMed DOI

Li P, Dzyuba B, Hulak M, Rodina M, Boryshpolets S, Li ZH, et al. Percoll gradient separation of cryopreserved common carp spermatozoa to obtain a fraction with higher motility, velocity and membrane integrity. Theriogenology. 2010;74(8):1356–61. 10.1016/j.theriogenology.2010.06.005 PubMed DOI

Chebanov MS, Galich EV. Sturgeon hatchery manual. Ankara: Food and Agriculture Organization of United Nations; 2013.

Dzyuba B, Boryshpolets S, Shaliutina A, Rodina M, Yamaner G, Gela D, et al. Spermatozoa motility, cryoresistance, and fertilizing ability in sterlet Acipenser ruthenus during sequential stripping. Aquaculture. 2012;356:272–8. 10.1016/j.aquaculture.2012.05.006 DOI

Dzyuba B, Cosson J, Boryshpolets S, Bondarenko O, Dzyuba V, Prokopchuk G, et al. In vitro sperm maturation in sterlet, Acipenser ruthenus. Reproductive Biology. 2014;14(2):160–3. 10.1016/j.repbio.2014.01.003 PubMed DOI

Live/Dead sperm viability kit (L-7011) [Internet]. Molecular Probes, Inc. 2001.

Dietrich MA, Arnold GJ, Fröhlich T, Ciereszko A. In-depth proteomic analysis of carp (Cyprinus carpio L) spermatozoa. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. 2014;12:10–5. 10.1016/j.cbd.2014.09.003 PubMed DOI

Dietrich MA, Dietrich GJ, Mostek A, Ciereszko A. Motility of carp spermatozoa is associated with profound changes in the sperm proteome. Journal of Proteomics. 2016;138:124–35. 10.1016/j.jprot.2016.02.029 PubMed DOI

Dietrich MA, Irnazarow I, Ciereszko A. Proteomic identification of seminal plasma proteins related to the freezability of carp semen. Journal of Proteomics. 2017;162:52–61. 10.1016/j.jprot.2017.04.015 PubMed DOI

Siegel S, Castellan NJ. Nonparametric statistics for the behavioral sciences: McGraw-Hill Humanities, New York; 1988.

Jerrold HZ. Biostatistical analysis. New Jersey: Pearson Education Inc.; 2014.

Poe-Zeigler R, Nehchiri F, Hamacher P, Boyd C, Oehninger S, Muasher S, et al. Effects of sperm viability on fertilization and embryo cleavage following intracytoplasmic sperm injection. Journal of Assisted Reproduction and Genetics. 1997;14(5):277–81. 10.1007/BF02765829 PubMed PMID: PMC3454722. PubMed DOI PMC

Arias ME, Andara K, Briones E, Felmer R. Bovine sperm separation by Swim-up and density gradients (Percoll and BoviPure): Effect on sperm quality, function and gene expression. Reproductive Biology. 2017;17(2):126–32. 10.1016/j.repbio.2017.03.002 PubMed DOI

Drobnis EZ, Zhong CQ, Overstreet JW. Separation of Cryopreserved Human Semen Using Sephadex Columns, Washing, or Percoll Gradients. Journal of Andrology 1991;12(3):201–8. PubMed

Ozkavukcu S, Erdemli E, Isik A, Oztuna D, Karahuseyinoglu S. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. Journal of Assisted Reproduction and Genetics. 2008;25(8):403–11. 10.1007/s10815-008-9232-3 PubMed PMID: PMC2582121. PubMed DOI PMC

Gallis JL, Fedrigo E, Jatteau P, Bonpunt E, Billard R. Siberian sturgeon spermatozoa: effects of dilution, pH, osmolality, sodium and potassium ions on motility. Acipenser. 1991:143–51.

Cosson J, Linhart O, Mims SD, Shelton WL, Rodina M. Analysis of motility parameters from paddlefish and shovelnose sturgeon spermatozoa. Journal of Fish Biology. 2000;56(6):1348–67. 10.1111/j.1095-8649.2000.tb02148.x DOI

Billard R, Cosson J, Noveiri SB, Pourkazemi M. Cryopreservation and short-term storage of sturgeon sperm, a review. Aquaculture. 2004;236(1–4):1–9. 10.1016/j.aquaculture.2003.10.029 DOI

Nynca J, Dietrich GJ, Dobosz S, Grudniewska J, Ciereszko A. Effect of cryopreservation on sperm motility parameters and fertilizing ability of brown trout semen. Aquaculture. 2014;433:62–5. 10.1016/j.aquaculture.2014.05.037 DOI

Judycka S, Szczepkowski M, Ciereszko A, Dietrich GJ. New extender for cryopreservation of Siberian sturgeon (Acipenser baerii) semen. Cryobiology. 2015;70(2):184–9. 10.1016/j.cryobiol.2015.02.005 PubMed DOI

Horokhovatskyi Y, Rodina M, Asyabar HD, Boryshpolets S, Dzyuba B. Consequences of uncontrolled cooling during sterlet (Acipenser ruthenus) sperm cryopreservation on post-thaw motility and fertilizing ability. Theriogenology. 2017;95:89–95. 10.1016/j.theriogenology.2017.03.007 PubMed DOI

Boryshpolets S, Dzyuba B, Rodina M, Alavi SMH, Gela D, Linhart O. Cryopreservation of sterlet (Acipenser ruthenus) spermatozoa using different cryoprotectants. Applied Ichthyology 2011;27(5):1147–9. 10.1111/j.1439-0426.2011.01866.x DOI

Mazur P. Principles of Cryobiology. Life in the frozen state 2004. p. 3–67.

Cabrita E, Martínez-Páramo S, Gavaia PJ, Riesco MF, Valcarce DG, Sarasquete C, et al. Factors enhancing fish sperm quality and emerging tools for sperm analysis. Aquaculture. 2014;432:389–401. 10.1016/j.aquaculture.2014.04.034 DOI

Müller K, Müller P, Pincemy G, Kurz A, Labbe C. Characterization of sperm plasma membrane properties after cholesterol modification: consequences for cryopreservation of rainbow trout spermatozoa. BIOLOGY OF REPRODUCTION. 2008;78(3):390–9. 10.1095/biolreprod.107.064253 PubMed DOI

Martínez-Páramo S, Diogo P, Dinis MT, Herráez MP, Sarasquete C, Cabrita E. Sea bass sperm freezability is influenced by motility variables and membrane lipid composition but not by membrane integrity and lipid peroxidation. Animal Reproduction Science. 2012;131(3):211–8. 10.1016/j.anireprosci.2012.03.008. PubMed DOI

Westfalewicz B, Dietrich MA, Ciereszko A. Impact of cryopreservation on bull (Bos taurus) semen proteome. Journal of Animal Science. 2015;93(11):5240–53. 10.2527/jas.2015-9237 PubMed DOI

Huang SY, Kuo YH, Lee WC, Tsou HL, Lee YP, Chang HL, et al. Substantial decrease of heat-shock protein 90 precedes the decline of sperm motility during cooling of boar spermatozoa. Theriogenology. 1998;51(5):1007–16. 10.1016/S0093-691X(99)00046-1 PubMed DOI

Ardon F, Suarez SS. Cryopreservation increases coating of bull sperm by seminal plasma binder of sperm proteins BSP1, BSP3, and BSP5. Reproduction 2013;146:111–7. 10.1530/REP-12-0468 PubMed DOI

Ollero M, Bescós O, Cebrián-Pérez JA, Muiño-Blanco T. Loss of plasma membrane proteins of bull spermatozoa through the freezing–thawing process. Theriogenology. 1998;49:547–55. 10.1016/S0093-691X(98)00006-5 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...