Sperm Lipid Composition in Early Diverged Fish Species: Internal vs. External Mode of Fertilization
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
DFG SCHIJ 476/12-2
Deutsche Forschungsgemeinschaft - International
No. 16-03754S
Grantová Agentura České Republiky - International
LM2018099
Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.02.1.01./0.0/0.0/16_025/0007370
Ministerstvo Školství, Mládeže a Tělovýchovy - International
125/2016/Z
Jihočeská Univerzita v Českých Budějovicích - International
PubMed
31979037
PubMed Central
PMC7072473
DOI
10.3390/biom10020172
PII: biom10020172
Knihovny.cz E-zdroje
- Klíčová slova
- fertilization mode, freshwater fish, lipidomics, mass spectrometry, sperm, thin-layer chromatography,
- MeSH
- chromatografie na tenké vrstvě MeSH
- druhová specificita MeSH
- fertilizace fyziologie MeSH
- glykosfingolipidy chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- kyseliny dokosahexaenové chemie MeSH
- lipidomika MeSH
- lipidy chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- ryby fyziologie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- spermie chemie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykosfingolipidy MeSH
- kyseliny dokosahexaenové MeSH
- lipidy MeSH
The lipid composition of sperm membranes is crucial for fertilization and differs among species. As the evolution of internal fertilization modes in fishes is not understood, a comparative study of the sperm lipid composition in freshwater representatives of externally and internally fertilizing fishes is needed for a better understanding of taxa-specific relationships between the lipid composition of the sperm membrane and the sperm physiology. The lipidomes of spermatozoa from stingray, a representative of cartilaginous fishes possessing internal fertilization, and sterlet, a representative of chondrostean fishes with external fertilization, have been studied by means of nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), electrospray MS, gas chromatography-(GC) MS, and thin-layer chromatography (TLC). NMR experiments revealed higher cholesterol content and the presence of phosphatidylserine in stingray compared to sterlet sperm. Unknown MS signals could be assigned to different glycosphingolipids in sterlet (neutral glycosphingolipid Gal-Cer(d18:1/16:0)) and stingray (acidic glycosphingolipid sulpho-Gal-Cer(d18:1/16:0)). Free fatty acids in sterlet sperm indicate internal energy storage. GC-MS experiments indicated a significant amount of adrenic acid, but only a low amount of docosahexaenoic acid in stingray sperm. In a nutshell, this study provides novel data on sperm lipid composition for freshwater stingray and sterlet possessing different modes of fertilization.
Zobrazit více v PubMed
Irisarri I., Baurain D., Brinkmann H., Delsuc F., Sire J.-Y., Kupfer A., Petersen J., Jarek M., Meyer A., Vences M., et al. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 2017;1:1370–1378. doi: 10.1038/s41559-017-0240-5. PubMed DOI PMC
Ahlberg P., Trinajstic K., Johanson Z., Long J. Pelvic claspers confirm chondrichthyan-like internal fertilization in arthrodires. Nature. 2009;460:888–889. doi: 10.1038/nature08176. PubMed DOI
Betancur-R R., Wiley E.O., Arratia G., Acero A., Bailly N., Miya M., Lecointre G., Ortí G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017;17:162. doi: 10.1186/s12862-017-0958-3. PubMed DOI PMC
Alavi S.M.H., Cosson J. Sperm motility in fishes (I). Effects of temperature and pH: A review. Cell Biol. Int. 2005;29:101–110. doi: 10.1016/j.cellbi.2004.11.021. PubMed DOI
Alavi S.M.H., Cosson J. Sperm motility in fishes (II). Effects of ions and osmolality: A review. Cell Biol. Int. 2006;30:1–14. doi: 10.1016/j.cellbi.2005.06.004. PubMed DOI
Dzyuba B., Cosson J., Boryshpolets S., Bondarenko O., Dzyuba V., Prokopchuk G., Gazo I., Rodina M., Linhart O. In vitro sperm maturation in sterlet, Acipenser ruthenus. Reprod. Biol. 2014;14:160–163. doi: 10.1016/j.repbio.2014.01.003. PubMed DOI
Tanaka H., Oka Y. Chaotropic ions and multivalent ions activate sperm in the viviparous fish guppy Poecilia reticulata. Biochim. Biophys. Acta. 2005;1724:173–180. doi: 10.1016/j.bbagen.2005.04.010. PubMed DOI
Liu Y., Cheng H., Tiersch T.R. The role of alkalinization-induced Ca2+ influx in sperm motility activation of a viviparous fish Redtail Splitfin (Xenotoca eiseni) Biol. Reprod. 2018;99:1159–1170. doi: 10.1093/biolre/ioy150. PubMed DOI PMC
Dzyuba V., Ninhaus-Silveira A., Kahanec M., Veríssimo-Silveira R., Rodina M., Holt W.V., Dzyuba B. Sperm motility in ocellate river stingrays: Evidence for post-testicular sperm maturation and capacitation in Chondrichthyes. J. Zool. 2019;307:9–16. doi: 10.1111/jzo.12610. DOI
Krasznai Z., Morisawa M., Krasznai Z.T., Morisawa S., Inaba K., Bazsáné Z.K., Rubovszky B., Bodnár B., Borsos A., Márián T. Gadolinium, a mechano-sensitive channel blocker, inhibits osmosis-initiated motility of sea- and freshwater fish sperm, but does not affect human or ascidian sperm motility. Cell Motil. Cytoskelet. 2003;55:232–243. doi: 10.1002/cm.10125. PubMed DOI
Bondarenko O., Dzyuba B., Cosson J., Yamaner G., Prokopchuk G., Psenicka M., Linhart O. Volume changes during the motility period of fish spermatozoa: Interspecies differences. Theriogenology. 2013;79:872–881. doi: 10.1016/j.theriogenology.2013.01.005. PubMed DOI
Beirão J., Zilli L., Vilella S., Cabrita E., Schiavone R., Herráez M.P. Improving sperm cryopreservation with antifreeze proteins: Effect on gilthead seabream (Sparus aurata) plasma membrane lipids. Biol. Reprod. 2012;86:59. doi: 10.1095/biolreprod.111.093401. PubMed DOI
Drokin S.I. Phospholipids and fatty acids of phospholipids of sperm from several freshwater and marine species of fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1993;104:423–428. doi: 10.1016/0305-0491(93)90389-M. DOI
Dzyuba V., Sampels S., Ninhaus-Silveira A., Kahanec M., Veríssimo-Silveira R., Rodina M., Cosson J., Boryshpolets S., Selinger M., Sterba J., et al. Sperm motility and lipid composition in internally fertilizing ocellate river stingray Potamotrygon motoro. Theriogenology. 2019;130:26–35. doi: 10.1016/j.theriogenology.2019.02.029. PubMed DOI
Labbé C., Maisse G. Influence of rainbow trout thermal acclimation on sperm cryopreservation: Relation to change in the lipid composition of the plasma membrane. Aquaculture. 1996;145:281–294. doi: 10.1016/S0044-8486(96)01354-3. DOI
Engel K.M., Sampels S., Dzyuba B., Podhorec P., Policar T., Dannenberger D., Schiller J. Swimming at different temperatures: The lipid composition of sperm from three freshwater fish species determined by mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Phys. Lipids. 2019;221:65–72. doi: 10.1016/j.chemphyslip.2019.03.014. PubMed DOI
Horokhovatskyi Y., Dietrich M.A., Lebeda I., Fedorov P., Rodina M., Dzyuba B. Cryopreservation effects on a viable sperm sterlet (Acipenser ruthenus) subpopulation obtained by a Percoll density gradient method. PLoS ONE. 2018;13:e0202514. doi: 10.1371/journal.pone.0202514. PubMed DOI PMC
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI
Schiller J., Müller M., Fuchs B., Arnold K., Huster D. 31P NMR Spectroscopy of Phospholipids: From Micelles to Membranes. Curr. Anal. Chem. 2007;3:283–301. doi: 10.2174/157341107782109635. DOI
Schiller J., Arnhold J., Benard S., Müller M., Reichl S., Arnold K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal. Biochem. 1999;267:46–56. doi: 10.1006/abio.1998.3001. PubMed DOI
Sun G., Yang K., Zhao Z., Guan S., Han X., Gross R.W. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal. Chem. 2008;80:7576–7585. doi: 10.1021/ac801200w. PubMed DOI PMC
Schiller J., Müller K., Süss R., Arnhold J., Gey C., Herrmann A., Lessig J., Arnold K., Müller P. Analysis of the lipid composition of bull spermatozoa by MALDI-TOF mass spectrometry—A cautionary note. Chem. Phys. Lipids. 2003;126:85–94. doi: 10.1016/S0009-3084(03)00097-5. PubMed DOI
Ogawa K., Fujiwara Y., Sugamata K., Abe T. Thin-layer chromatography of neutral glycosphingolipids: An improved simple method for the resolution of GlcCer, GalCer, LacCer and Ga2Cer. J. Chromatogr. 1988;426:188–193. doi: 10.1016/S0378-4347(00)81942-8. PubMed DOI
Dannenberger D., Nuernberg G., Nuernberg K., Will K., Schauer N., Schmicke M. Effects of diets supplemented with n – 3 or n – 6 PUFA on pig muscle lipid metabolites measured by non-targeted LC–MS lipidomic profiling. J. Food Compos. Anal. 2017;56:47–54. doi: 10.1016/j.jfca.2016.11.015. DOI
Dannenberger D., Tuchscherer M., Nürnberg G., Schmicke M., Kanitz E. Sea Buckthorn Pomace Supplementation in the Diet of Growing Pigs-Effects on Fatty Acid Metabolism, HPA Activity and Immune Status. Int. J. Mol. Sci. 2018;19:596. doi: 10.3390/ijms19020596. PubMed DOI PMC
Pitnick S., Hosken D.J., Birkhead T.R. Sperm Biology. Elsevier; Amsterdam, The Netherlands: 2009. Sperm morphological diversity; pp. 69–149.
Vriese S.R.D., Christophe A.B. Male Fertility and Lipid Metabolism. AOCS Press; Champaign, IL, USA: 2003.
Bell M.V., Dick J.R., Buda C. Molecular speciation of fish sperm phospholipids: Large amounts of dipolyunsaturated phosphatidylserine. Lipids. 1997;32:1085–1091. doi: 10.1007/s11745-997-0140-y. PubMed DOI
Lucifora L.O., de Carvalho M.R., Kyne P.M., White W.T. Freshwater sharks and rays. Curr. Biol. 2015;25:R971–R973. doi: 10.1016/j.cub.2015.06.051. PubMed DOI
Baron C.B., Coburn R.F. Comparison of two Copper Reagents for Detection of Saturated and Unsaturated Neutral Lipids by Charring Densitometry. J. Liq. Chromatogr. 1984;7:2793–2801. doi: 10.1080/01483918408067046. DOI
Schiller J., Arnold K. Application of high resolution 31P NMR spectroscopy to the characterization of the phospholipid composition of tissues and body fluids—A methodological review. Med. Sci. Monit. 2002;8:MT205–MT222. PubMed
Gracià R.S., Bezlyepkina N., Knorr R.L., Lipowsky R., Dimova R. Effect of cholesterol on the rigidity of saturated and unsaturated membranes: Fluctuation and electrodeformation analysis of giant vesicles. Soft Matter. 2010;6:1472. doi: 10.1039/b920629a. DOI
Petkovic M., Schiller J., Müller M., Benard S., Reichl S., Arnold K., Arnhold J. Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: Phosphatidylcholine prevents the detection of further species. Anal. Biochem. 2001;289:202–216. doi: 10.1006/abio.2000.4926. PubMed DOI
Griesinger H., Fuchs B., Süß R., Matheis K., Schulz M., Schiller J. Stationary phase thickness determines the quality of thin-layer chromatography/matrix-assisted laser desorption and ionization mass spectra of lipids. Anal. Biochem. 2014;451:45–47. doi: 10.1016/j.ab.2014.02.002. PubMed DOI
Leventis P.A., Grinstein S. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 2010;39:407–427. doi: 10.1146/annurev.biophys.093008.131234. PubMed DOI
Kurz A., Viertel D., Herrmann A., Müller K. Localization of phosphatidylserine in boar sperm cell membranes during capacitation and acrosome reaction. Reproduction. 2005;130:615–626. doi: 10.1530/rep.1.00561. PubMed DOI
Cerolini S., Kelso K.A., Noble R.C., Speake B.K., Pizzi F., Cavalchini L.G. Relationship between spermatozoan lipid composition and fertility during aging of chickens. Biol. Reprod. 1997;57:976–980. doi: 10.1095/biolreprod57.5.976. PubMed DOI
White T., Bursten S., Federighi D., Lewis R.A., Nudelman E. High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal. Biochem. 1998;258:109–117. doi: 10.1006/abio.1997.2545. PubMed DOI
Fuchs B., Schiller J., Süss R., Schürenberg M., Suckau D. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal. Bioanal. Chem. 2007;389:827–834. doi: 10.1007/s00216-007-1488-4. PubMed DOI
Bondarenko V., Cosson J. Structure and beating behavior of the sperm motility apparatus in aquatic animals. Theriogenology. 2019;135:152–163. doi: 10.1016/j.theriogenology.2019.06.005. PubMed DOI
Han X., Cheng H. Characterization and direct quantitiation of cerebroside molecular species from lipid extracts by shotgun lipidomics. J. Lipid Res. 2004;46:163–175. doi: 10.1194/jlr.D400022-JLR200. PubMed DOI
Barone A., Säljö K., Benktander J., Blomqvist M., Månsson J.-E., Johansson B.R., Mölne J., Aspegren A., Björquist P., Breimer M.E., et al. Sialyl-lactotetra, a novel cell surface marker of undifferentiated human pluripotent stem cells. J. Biol. Chem. 2014;289:18846–18859. doi: 10.1074/jbc.M114.568832. PubMed DOI PMC
Seng J.A., Ellis S.R., Hughes J.R., Maccarone A.T., Truscott R.J.W., Blanksby S.J., Mitchell T.W. Characterisation of sphingolipids in the human lens by thin layer chromatography-desorption electrospray ionisation mass spectrometry. Biochim. Biophys. Acta. 2014;1841:1285–1291. doi: 10.1016/j.bbalip.2014.05.006. PubMed DOI
Fuchs B., Jakop U., Göritz F., Hermes R., Hildebrandt T., Schiller J., Müller K. MALDI-TOF “fingerprint” phospholipid mass spectra allow the differentiation between ruminantia and feloideae spermatozoa. Theriogenology. 2009;71:568–575. doi: 10.1016/j.theriogenology.2008.08.023. PubMed DOI
Teuber K., Schiller J., Jakop U., Lüpold S., Orledge J.M., Blount J.D., Royle N.J., Hoodless A., Müller K. MALDI-TOF mass spectrometry as a simple tool to determine the phospholipid/glycolipid composition of sperm: Pheasant spermatozoa as one selected example. Anim. Reprod. Sci. 2011;123:270–278. doi: 10.1016/j.anireprosci.2011.01.009. PubMed DOI
Furumitsu K., Wyffels J.T., Yamaguchi A. Reproduction and embryonic development of the red stingray Hemitrygon akajei from Ariake Bay, Japan. Ichthyol. Res. 2019;66:419–436. doi: 10.1007/s10228-019-00687-9. DOI
Bernal M.A., Sinai N.L., Rocha C., Gaither M.R., Dunker F., Rocha L.A. Long-term sperm storage in the brownbanded bamboo shark Chiloscyllium punctatum. J. Fish Biol. 2015;86:1171–1176. doi: 10.1111/jfb.12606. PubMed DOI
Pratt H.L. The storage of spermatozoa in the oviducal glands of western North Atlantic sharks. Environ. Biol. Fish. 1993;38:139–149. doi: 10.1007/BF00842910. DOI
Tanphaichitr N., Kongmanas K., Faull K.F., Whitelegge J., Compostella F., Goto-Inoue N., Linton J.-J., Doyle B., Oko R., Xu H., et al. Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction. Prog. Lipid Res. 2018;72:18–41. doi: 10.1016/j.plipres.2018.08.002. PubMed DOI PMC
White D., Weerachatyanukul W., Gadella B., Kamolvarin N., Attar M., Tanphaichitr N. Role of sperm sulfogalactosylglycerolipid in mouse sperm-zona pellucida binding. Biol. Reprod. 2000;63:147–155. doi: 10.1095/biolreprod63.1.147. PubMed DOI
Schnaar R.L., Kinoshita T. Glycosphingolipids. In: Varki A., Cummings R.D., Esko J.D., Stanley P., Hart G.W., Aebi M., Darvill A.L.G., Kinoshita T., Packer N.H., Prestegard J.H., et al., editors. Essentials of Glycobiology. 3rd ed. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY, USA: 2015–2017. PubMed DOI
Chryssostomos Chatgilialoglu C., Ferreri C., Melchiorre M., Sansone A., Torreggiani A. Lipid geometrical isomerism: From chemistry to biology and diagnostics. Chem. Rev. 2014;114:255–284. doi: 10.1021/cr4002287. PubMed DOI
Cerolini S., Zaniboni L., Maldjian A., Gliozzi T. Effect of docosahexaenoic acid and alpha-tocopherol enrichment in chicken sperm on semen quality, sperm lipid composition and susceptibility to peroxidation. Theriogenology. 2006;66:877–886. doi: 10.1016/j.theriogenology.2006.02.022. PubMed DOI
Guijas C., Astudillo A.M., Gil-de-Gómez L., Rubio J.M., Balboa M.A., Balsinde J. Phospholipid sources for adrenic acid mobilization in RAW 264.7 macrophages. Comparison with arachidonic acid. Biochim. Biophys. Acta. 2012;1821:1386–1393. doi: 10.1016/j.bbalip.2012.07.010. PubMed DOI
Blecha M., Dzyuba B., Boryshpolets S., Horokhovatskyi Y., Dadras H., Malinovskyi O., Sampels S., Policar T. Spermatozoa quality and sperm lipid composition in intensively cultured and wild burbot (Lota lota) Anim. Reprod. Sci. 2018;198:129–136. doi: 10.1016/j.anireprosci.2018.09.011. PubMed DOI
Dadras H., Sampels S., Golpour A., Dzyuba V., Cosson J., Dzyuba B. Analysis of common carp Cyprinus carpio sperm motility and lipid composition using different in vitro temperatures. Anim. Reprod. Sci. 2017;180:37–43. doi: 10.1016/j.anireprosci.2017.02.011. PubMed DOI
Díaz R., Lee-Estevez M., Quiñones J., Dumorné K., Short S., Ulloa-Rodríguez P., Valdebenito I., Sepúlveda N., Farías J.G. Changes in Atlantic salmon (Salmo salar) sperm morphology and membrane lipid composition related to cold storage and cryopreservation. Anim. Reprod. Sci. 2019;204:50–59. doi: 10.1016/j.anireprosci.2019.03.004. PubMed DOI