Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP)

. 2015 Nov ; 14 (11) : 2973-87. [epub] 20150901

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26330542

Grantová podpora
Wellcome Trust - United Kingdom
C377/A6355 Cancer Research UK - United Kingdom

Odkazy

PubMed 26330542
PubMed Central PMC4638040
DOI 10.1074/mcp.m115.051169
PII: S1535-9476(20)32604-9
Knihovny.cz E-zdroje

CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control.

Zobrazit více v PubMed

Cerveny L., Straskova A., Dankova V., Hartlova A., Ceckova M., Staud F., and Stulik J. (2012) Tetratricopeptide repeat motifs in the world of bacterial pathogens; role in virulence mechanisms. Infection Immunity 81, 629–635 PubMed PMC

D'Andrea L.D., and Regan L. (2003) TPR proteins: The versatile helix. Trends Biochem. Sci. 28, 655–662 PubMed

Zeytuni N., and Zarivach R. (2012) Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20, 397–405 PubMed

Andrade M. A., Perez-Iratxeta C., and Ponting C.P. (2001) Protein repeats: structures, functions, and evolution. J. Struct. Biol. 134, 117–131 PubMed

Smith D. F. (2004) Tetratricopeptide repeat cochaperones in steroid receptor complexes. Cell Stress Chaperones 9, 109–121 PubMed PMC

Parashar V., Jeffrey P. D., and Neiditch M. B. (2013) Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors. PLoS Biol. 11, e1001512. PubMed PMC

Cliff M. J., Harris R., Barford D., Ladbury J. E., and Williams M. A. (2006) Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90. Structure 14, 415–426 PubMed

Cliff M. J., Williams M. A., Brooke-Smith J., Barford D., and Ladbury J. E. (2005) Molecular recognition via coupled folding and binding in a TPR domain. J. Mol. Biol. 346, 717–732 PubMed

Graf C., Stankiewicz M., Nikolay R., and Mayer M. P. (2010) Insights into the conformational dynamics of the E3 ubiquitin ligase CHIP in complex with chaperones and E2 enzymes. Biochemistry 49, 2121–2129 PubMed

Dunker A. K., Cortese M. S., Romero P., Iakoucheva L. M., and Uversky V. N. (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J. 272, 5129–5148 PubMed

Ballinger C. A., Connell P., Wu Y., Hu Z., Thompson L. J., Yin L. Y., and Patterson C. (1999). Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell Biol. 19, 4535–4545 PubMed PMC

Narayan V., Pion E., Landre V., Muller P., and Ball K. L. (2011) Docking dependent ubiquitination of the interferon regulatory factor-1 tumour suppressor protein by the ubiquitin ligase chip. J. Biol. Chem. 286, 14291–14303 PubMed PMC

McDonough H., and Patterson C. (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 PubMed PMC

Ronnebaum S. M., Wu Y., McDonough H., and Patterson C. (2013) The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination. Mol. Cell. Biol. 33, 4461–4472 PubMed PMC

Tripathi V., Ali A., Bhat R., and Pati U. (2007) CHIP chaperones wild type p53 tumor suppressor protein. J. Biol. Chem. 282, 28441–28454 PubMed

Hupp T. R., and Lane D. P. (1994) Allosteric activation of latent p53 tetramers. Curr. Biol. 4, 865–875 PubMed

Pascal B. D., Willis S., Lauer J. L., Landgraf R. R., West G. M., Marciano D., Novick S., Goswami D., Chalmers M. J., and Griffin P. R. (2012) HDX workbench: software for the analysis of H/D exchange MS data. J. Am. Soc. Mass Spectrom. 23, 1512–1521 PubMed PMC

Pion E., Narayan V., Eckert M., and Ball K. L. (2009) Role of the IRF-1 enhancer domain in signalling polyubiquitination and degradation. Cell Signal 21, 1479–1487 PubMed

Wallace M., Worrall E., Pettersson S., Hupp T. R., and Ball K. L. (2006) Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol. Cell 23, 251–263 PubMed

Zhang M., Windheim M., Roe S.M., Peggie M., Cohen P., Prodromou C., and Pearl L. H. (2005) Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 PubMed

Esser C., Scheffner M., and Hohfeld J. (2005) The chaperone associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J. Biol. Chem. 280, 27443–27448 PubMed

Alberti S., Demand J., Esser C., Emmerich N., Schild H., and Hohfeld J. (2002) Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J. Biol. Chem. 277, 45920–45927 PubMed

Fourie A. M., Hupp T. R., Lane D. P., Sang B. C., Barbosa M. S., Sambrook J. F., and Gething M. J. (1997) HSP70 binding sites in the tumor suppressor protein p53. J. Biol. Chem. 272, 19471–19479 PubMed

Narayan V., Eckert M., Zylicz A., Zylicz M., and Ball K. L. (2009) Cooperative regulation of the interferon regulatory factor-1 tumor suppressor protein by core components of the molecular chaperone machinery. J. Biol. Chem. 284, 25889–25899 PubMed PMC

Zhang H., Amick J., Chakravarti R., Santarriaga S., Schlanger S., McGlone C., Dare M., Nix J.C., Scaglione K.M., Stuehr D.J., et al. (2015) A bipartite interaction between Hsp70 CHIP regulates ubiquitination of chaperoned client proteins. Structure 23, 472–482 PubMed PMC

Pace C. N., and Scholtz J. M. (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J. 75, 422–427 PubMed PMC

Bonvini P., Dalla Rosa H., Vignes N., and Rosolen A. (2004) Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res. 64, 3256–3264 PubMed

Xu W., Marcu M., Yuan X., Mimnaugh E., Patterson C., Neckers L. (2002) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl. Acad. Sci. U. S. A. 99, 12847–12852 PubMed PMC

Zhang L., Nephew K. P., and Gallagher P. J. (2007) Regulation of death-associated protein kinase. Stabilization by HSP90 heterocomplexes. J. Biol. Chem. 282, 11795–11804 PubMed PMC

Pruneda J. N., Littlefield P. J., Soss S. E., Nordquist K. A., Chazin W. J., Brzovic P. S., and Klevit R. E. (2012) Structure of an E3:E2∼Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47, 933–942 PubMed PMC

Xu Z., Kohli E., Devlin K. I., Bold M., Nix J. C., and Misra S. (2008) Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct. Biol. 8, 26. PubMed PMC

Trcka F., Durech M., Man P., Hernychova L., Muller P., and Vojtesek B. (2014) The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J.Biol. Chem. 289, 9887–9901 PubMed PMC

Budhidarmo R., Nakatani Y., and Day C. L. (2012) RINGs hold the key to ubiquitin transfer. Trends Biochem. Sci. 37, 58–65 PubMed

Plechanovova A., Jaffray E. G., Tatham M. H., Naismith J. H., and Hay R.T. (2012) Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 PubMed PMC

Motlagh H. N., Li J., Thompson E.B., and Hilser V. J. (2012) Interplay between allostery and intrinsic disorder in an ensemble. Biochem. Soc. Trans. 40, 975–980 PubMed PMC

Nussinov R., Tsai C. J., and Ma B. (2013) The underappreciated role of allostery in the cellular network. Ann. Rev. Biophys. 42, 169–189 PubMed PMC

Nussinov R., Ma B., and Tsai C. J. (2013) A broad view of scaffolding suggests that scaffolding proteins can actively control regulation and signaling of multienzyme complexes through allostery. Biochim. Biophys. Acta PubMed

Liu J., and Nussinov R. (2013) The role of allostery in the ubiquitin-proteasome system. Crit. Rev. Biochem. Mol. Biol. 48, 89–97 PubMed PMC

Rosenbaum J. C., Fredrickson E. K., Oeser M. L., Garrett-Engele C. M., Locke M. N., Richardson L. A., Nelson Z. W., Hetrick E. D., Milac T. I., Gottschling D.E., et al. (2011) Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. Molecular cell 41, 93–106 PubMed PMC

Lyumkis D., Doamekpor S. K., Bengtson M. H., Lee J. W., Toro T. B., Petroski M. D., Lima C. D., Potter C. S., Carragher B., and Joazeiro C. A. (2013) Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase. Proc. Natl. Acad. Sci. U. S. A. 110, 1702–1707 PubMed PMC

Ozkan E., Yu H., and Deisenhofer J. (2005) Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc. Natl. Acad. Sci. U. S. A. 102, 18890–18895 PubMed PMC

Muller P., Ruckova E., Halada P., Coates P.J., Hrstka R., Lane D.P., and Vojtesek B. (2013) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32, 3101–3110 PubMed

Hilser V.J., Thompson E.B. (2011) Structural dynamics, intrinsic disorder, and allostery in nuclear receptors as transcription factors. J. Biol. Chem. 286, 39675–39682 PubMed PMC

Ma B., and Nussinov R. (2009) Amplification of signaling via cellular allosteric relay and protein disorder. Proc. Natl. Acad. Sci. U. S. A. 106, 6887–6888 PubMed PMC

Wang L., Liu Y. T., Hao R., Chen L., Chang Z., Wang H. R., Wang Z. X., and Wu J. W. (2011) Molecular mechanism of the negative regulation of Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP). J. Biol. Chem. 286, 15883–15894 PubMed PMC

Kalia L.V., Kalia S.K., Chau H., Lozano A.M., Hyman B.T., and McLean P.J. (2011). Ubiquitinylation of alpha-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS One 6, e14695. PubMed PMC

Brinker A., Scheufler C., Von Der Mulbe F., Fleckenstein B., Herrmann C., Jung G., Moarefi I., and Hartl F.U. (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes. J. Biol. Chem. 277, 19265–19275 PubMed

Ramsey A.J., Russell L.C., and Chinkers M. (2009) C-terminal sequences of hsp70 and hsp90 as nonspecific anchors for tetratricopeptide repeat (TPR) proteins. Biochem. J. 423, 411–419 PubMed PMC

Zobrazit více v PubMed

PDB
2C2L, 2C2V, 2OXQ, 4AP4

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...