The development of a canine single-chain phage antibody library to isolate recombinant antibodies for use in translational cancer research
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
40132540
PubMed Central
PMC12049728
DOI
10.1016/j.crmeth.2025.101008
PII: S2667-2375(25)00044-X
Knihovny.cz E-zdroje
- Klíčová slova
- CP: cancer biology, CP: immunology, canine physiology, next-generation sequencing, scfv phage libraries, translational research, veterinary medicine,
- MeSH
- jednořetězcové protilátky * genetika imunologie MeSH
- lidé MeSH
- monoklonální protilátky MeSH
- nádory * imunologie MeSH
- peptidová knihovna * MeSH
- psi MeSH
- rekombinantní proteiny izolace a purifikace imunologie genetika MeSH
- translační biomedicínský výzkum * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jednořetězcové protilátky * MeSH
- monoklonální protilátky MeSH
- peptidová knihovna * MeSH
- rekombinantní proteiny MeSH
The development of canine immunotolerant monoclonal antibodies can accelerate the invention of new medicines for both canine and human diseases. We develop a methodology to clone the naive, somatically mutated variable domain repertoire from canine B cell mRNA using 5'RACE PCR. A set of degenerate primers were then designed and used to clone variable domain genes into archival "holding" plasmid libraries. These archived variable domain genes were then combinatorially ligated to produce a scFv M13 phage library. Next-generation long-read and short-read DNA sequencing methodologies were developed to annotate features of the cloned library including CDR diversity and IGHV/IGKV/IGLV subfamily distribution. A synthetic immunoglobulin G was developed from this scFv library to the canine immune checkpoint receptor PD-1. This synthetic platform can be used to clone and annotate archived antibody variable domain genes for use in perpetuity in order to develop improved preclinical models for the treatment of complex human diseases.
Inserm UMRS1131 Institut de Génétique Moléculaire Université Paris 7 Hôpital St Louis Paris France
International Centre for Cancer Vaccine Science University of Gdansk Gdansk Poland
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
The University of Edinburgh Royal School of Veterinary Studies and Roslin Institute Edinburgh UK
University of Aberdeen Polwarth Building Foresterhill Aberdeen UK
University of Edinburgh Institute of Genetics and Cancer Edinburgh Scotland UK
Zobrazit více v PubMed
Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
van Helden P.D., van Helden L.S., Hoal E.G. One world, one health. Humans, animals and the environment are inextricably linked--a fact that needs to be remembered and exploited in our modern approach to health. EMBO Rep. 2013;14:497–501. doi: 10.1038/embor.2013.61. PubMed DOI PMC
LeBlanc A.K., Mazcko C.N. Improving human cancer therapy through the evaluation of pet dogs. Nat. Rev. Cancer. 2020;20:727–742. doi: 10.1038/s41568-020-0297-3. PubMed DOI
Pratelli A., Buonavoglia A., Lanave G., Tempesta M., Camero M., Martella V., Decaro N. One world, one health, one virology of the mysterious labyrinth of coronaviruses: the canine coronavirus affair. Lancet Microbe. 2021;2:e646–e647. doi: 10.1016/S2666-5247(21)00282-2. PubMed DOI PMC
Uhl E.W., Warner N.J. Mouse Models as Predictors of Human Responses: Evolutionary Medicine. Curr Pathobiol Rep. 2015;3:219–223. doi: 10.1007/s40139-015-0086-y. PubMed DOI PMC
Masopust D., Sivula C.P., Jameson S.C. Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. J. Immunol. 2017;199:383–388. doi: 10.4049/jimmunol.1700453. PubMed DOI PMC
Khanna C., Lindblad-Toh K., Vail D., London C., Bergman P., Barber L., Breen M., Kitchell B., McNeil E., Modiano J.F., et al. The dog as a cancer model. Nat. Biotechnol. 2006;24:1065–1066. doi: 10.1038/nbt0906-1065b. PubMed DOI
Paoloni M., Khanna C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer. 2008;8:147–156. doi: 10.1038/nrc2273. PubMed DOI
Amin S.B., Anderson K.J., Boudreau C.E., Martinez-Ledesma E., Kocakavuk E., Johnson K.C., Barthel F.P., Varn F.S., Kassab C., Ling X., et al. Comparative Molecular Life History of Spontaneous Canine and Human Gliomas. Cancer Cell. 2020;37:243–257. doi: 10.1016/j.ccell.2020.01.004. PubMed DOI PMC
MacDiarmid J.A., Langova V., Bailey D., Pattison S.T., Pattison S.L., Christensen N., Armstrong L.R., Brahmbhatt V.N., Smolarczyk K., Harrison M.T., et al. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model. PLoS One. 2016;11 doi: 10.1371/journal.pone.0151832. PubMed DOI PMC
Wang G., Wu M., Durham A.C., Radaelli E., Mason N.J., Xu X., Roth D.B. Molecular subtypes in canine hemangiosarcoma reveal similarities with human angiosarcoma. PLoS One. 2020;15 doi: 10.1371/journal.pone.0229728. PubMed DOI PMC
Gellrich F.F., Schmitz M., Beissert S., Meier F. Anti-PD-1 and Novel Combinations in the Treatment of Melanoma-An Update. J. Clin. Med. 2020;9 doi: 10.3390/jcm9010223. PubMed DOI PMC
Scott A.M., Wolchok J.D., Old L.J. Antibody therapy of cancer. Nat. Rev. Cancer. 2012;12:278–287. doi: 10.1038/nrc3236. PubMed DOI
Kulkarni S.S., Falzarano D. Unique aspects of adaptive immunity in camelids and their applications. Mol. Immunol. 2021;134:102–108. doi: 10.1016/j.molimm.2021.03.001. PubMed DOI
Matz H., Dooley H. Shark IgNAR-derived binding domains as potential diagnostic and therapeutic agents. Dev. Comp. Immunol. 2019;90:100–107. doi: 10.1016/j.dci.2018.09.007. PubMed DOI
Hawkins A., Joyce C., Brady K., Hold A., Smith A., Knight M., Howard C., van den Elsen J., Lawson A.D.G., Macpherson A. The proximity of the N- and C- termini of bovine knob domains enable engineering of target specificity into polypeptide chains. mAbs. 2022;14 doi: 10.1080/19420862.2022.2076295. PubMed DOI PMC
McMahon C., Baier A.S., Pascolutti R., Wegrecki M., Zheng S., Ong J.X., Erlandson S.C., Hilger D., Rasmussen S.G.F., Ring A.M., et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 2018;25:289–296. doi: 10.1038/s41594-018-0028-6. PubMed DOI PMC
Marable J., Ruiz D., Jaiswal A.K., Bhattacharya R., Pantazes R., Agarwal P., Suryawanshi A.S., Bedi D., Mishra A., Smith B.F., Sandey M. Nanobody-based CTLA4 inhibitors for immune checkpoint blockade therapy of canine cancer patients. Sci. Rep. 2021;11 doi: 10.1038/s41598-021-00325-3. PubMed DOI PMC
Li D., English H., Hong J., Liang T., Merlino G., Day C.P., Ho M. A novel PD-L1-targeted shark V(NAR) single-domain-based CAR-T cell strategy for treating breast cancer and liver cancer. Mol Ther Oncolytics. 2022;24:849–863. doi: 10.1016/j.omto.2022.02.015. PubMed DOI PMC
Gearing D.P., Virtue E.R., Gearing R.P., Drew A.C. A fully caninised anti-NGF monoclonal antibody for pain relief in dogs. BMC Vet. Res. 2013;9:226. doi: 10.1186/1746-6148-9-226. PubMed DOI PMC
Enomoto M., Mantyh P.W., Murrell J., Innes J.F., Lascelles B.D.X. Anti-nerve growth factor monoclonal antibodies for the control of pain in dogs and cats. Vet. Rec. 2019;184:23. doi: 10.1136/vr.104590. PubMed DOI PMC
Lascelles B.D., Knazovicky D., Case B., Freire M., Innes J.F., Drew A.C., Gearing D.P. A canine-specific anti-nerve growth factor antibody alleviates pain and improves mobility and function in dogs with degenerative joint disease-associated pain. BMC Vet. Res. 2015;11:101. doi: 10.1186/s12917-015-0413-x. PubMed DOI PMC
Igase M., Inanaga S., Tani K., Nakaichi M., Sakai Y., Sakurai M., Kato M., Tsukui T., Mizuno T. Long-term survival of dogs with stage 4 oral malignant melanoma treated with anti-canine PD-1 therapeutic antibody: A follow-up case report. Vet. Comp. Oncol. 2022;20:901–905. doi: 10.1111/vco.12829. PubMed DOI
Igase M., Nemoto Y., Itamoto K., Tani K., Nakaichi M., Sakurai M., Sakai Y., Noguchi S., Kato M., Tsukui T., Mizuno T. A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-75533-4. PubMed DOI PMC
Li G., Ohishi T., Kaneko M.K., Takei J., Mizuno T., Kawada M., Saito M., Suzuki H., Kato Y. Defucosylated Mouse-Dog Chimeric Anti-EGFR Antibody Exerts Antitumor Activities in Mouse Xenograft Models of Canine Tumors. Cells. 2021;10 doi: 10.3390/cells10123599. PubMed DOI PMC
Singer J., Fazekas J., Wang W., Weichselbaumer M., Matz M., Mader A., Steinfellner W., Meitz S., Mechtcheriakova D., Sobanov Y., et al. Generation of a canine anti-EGFR (ErbB-1) antibody for passive immunotherapy in dog cancer patients. Mol. Cancer Therapeut. 2014;13:1777–1790. doi: 10.1158/1535-7163.MCT-13-0288. PubMed DOI PMC
Braganza A., Wallace K., Pell L., Parrish C.R., Siegel D.L., Mason N.J. Generation and validation of canine single chain variable fragment phage display libraries. Vet. Immunol. Immunopathol. 2011;139:27–40. doi: 10.1016/j.vetimm.2010.07.026. PubMed DOI
Cong C., ZhongLing J., RongFeng C., WenRu T., HuaTao L. Construction and panning of canine phage scFv library for dog erythrocyte antigen. Agricultural Biotechnology. 2017;25:901–910.
Ferrara F., Erasmus M.F., D'Angelo S., Leal-Lopes C., Teixeira A.A., Choudhary A., Honnen W., Calianese D., Huang D., Peng L., et al. A pandemic-enabled comparison of discovery platforms demonstrates a naive antibody library can match the best immune-sourced antibodies. Nat. Commun. 2022;13:462. doi: 10.1038/s41467-021-27799-z. PubMed DOI PMC
Freeman J.D., Warren R.L., Webb J.R., Nelson B.H., Holt R.A. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res. 2009;19:1817–1824. doi: 10.1101/gr.092924.109. PubMed DOI PMC
Hwang M.H., Darzentas N., Bienzle D., Moore P.F., Morrison J., Keller S.M. Characterization of the canine immunoglobulin heavy chain repertoire by next generation sequencing. Vet. Immunol. Immunopathol. 2018;202:181–190. doi: 10.1016/j.vetimm.2018.07.002. PubMed DOI
Khanna C., London C., Vail D., Mazcko C., Hirschfeld S. Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin. Cancer Res. 2009;15:5671–5677. doi: 10.1158/1078-0432.CCR-09-0719. PubMed DOI PMC
Keller B.M., Maier J., Secker K.A., Egetemaier S.M., Parfyonova Y., Rothbauer U., Traenkle B. Chromobodies to Quantify Changes of Endogenous Protein Concentration in Living Cells. Mol. Cell. Proteomics. 2018;17:2518–2533. doi: 10.1074/mcp.TIR118.000914. PubMed DOI PMC
Gomes M., Fleck A., Degaugue A., Gourmelon F., Leger C., Aumont-Nicaise M., Mesneau A., Jean-Jacques H., Hassaine G., Urvoas A., et al. Design of an artificial phage-display library based on a new scaffold improved for average stability of the randomized proteins. Sci. Rep. 2023;13:1339. doi: 10.1038/s41598-023-27710-4. PubMed DOI PMC
Cullen J.N., Martin J., Vilella A.J., Treeful A., Sargan D., Bradley A., Friedenberg S.G. Development and application of a next-generation sequencing protocol and bioinformatics pipeline for the comprehensive analysis of the canine immunoglobulin repertoire. PLoS One. 2022;17 doi: 10.1371/journal.pone.0270710. PubMed DOI PMC
Yoshimoto S., Chester N., Xiong A., Radaelli E., Wang H., Brillantes M., Gulendran G., Glassman P., Siegel D.L., Mason N.J. Development and pharmacokinetic assessment of a fully canine anti-PD-1 monoclonal antibody for comparative translational research in dogs with spontaneous tumors. mAbs. 2023;15 doi: 10.1080/19420862.2023.2287250. PubMed DOI PMC
Liu Z., Chen O., Wall J.B.J., Zheng M., Zhou Y., Wang L., Vaseghi H.R., Qian L., Liu J. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci. Rep. 2017;7:2193. doi: 10.1038/s41598-017-02460-2. PubMed DOI PMC
Lin Y., Hung C.Y., Bhattacharya C., Nichols S., Rahimuddin H., Kittur F.S., Leung T., Xie J. An Effective Way of Producing Fully Assembled Antibody in Transgenic Tobacco Plants by Linking Heavy and Light Chains via a Self-Cleaving 2A Peptide. Front. Plant Sci. 2018;9:1379. doi: 10.3389/fpls.2018.01379. PubMed DOI PMC
Ebo J.S., Saunders J.C., Devine P.W.A., Gordon A.M., Warwick A.S., Schiffrin B., Chin S.E., England E., Button J.D., Lloyd C., et al. An in vivo platform to select and evolve aggregation-resistant proteins. Nat. Commun. 2020;11:1816. doi: 10.1038/s41467-020-15667-1. PubMed DOI PMC
Uchanski T., Zogg T., Yin J., Yuan D., Wohlkonig A., Fischer B., Rosenbaum D.M., Kobilka B.K., Pardon E., Steyaert J. An improved yeast surface display platform for the screening of nanobody immune libraries. Sci. Rep. 2019;9:382. doi: 10.1038/s41598-018-37212-3. PubMed DOI PMC
Santos, M. (2015). Developing Synthetic Tools to Image and Modulate the Activity of Carboxyl terminus of Hsc70-Interacting Protein (CHIP). The experimental work described in the thesis was carried out at the Edinburgh Cancer Research Centre (ECRC) of the Institute of Genetics and Molecular Medicine at the University of Edinburgh in the framework of the ERASMUS+ programme. (https://core.ac.uk/download/pdf/143412857.pdf
Mohtar, A. (2018). Novel role of an ER-resident chaperone pathway in cancer signalling. Edinburgh Medical School thesis and dissertation collection. https://era.ed.ac.uk/handle/1842/28765?show=full
Lisowska M., Lickiss F., Gil-Mir M., Huart A.S., Trybala Z., Way L., Hernychova L., Krejci A., Muller P., Krejcir R., et al. Next-generation sequencing of a combinatorial peptide phage library screened against ubiquitin identifies peptide aptamers that can inhibit the in vitro ubiquitin transfer cascade. Front. Microbiol. 2022;13 doi: 10.3389/fmicb.2022.875556. PubMed DOI PMC
Mazor R.D., Nathan N., Gilboa A., Stoler-Barak L., Moss L., Solomonov I., Hanuna A., Divinsky Y., Shmueli M.D., Hezroni H., et al. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell. 2022;185:1208–1222. doi: 10.1016/j.cell.2022.02.012. PubMed DOI
Kavanagh D.M., Smyth A.M., Martin K.J., Dun A., Brown E.R., Gordon S., Smillie K.J., Chamberlain L.H., Wilson R.S., Yang L., et al. A molecular toggle after exocytosis sequesters the presynaptic syntaxin1a molecules involved in prior vesicle fusion. Nat. Commun. 2014;5:5774. doi: 10.1038/ncomms6774. PubMed DOI PMC
Roben P.W., Salem A.N., Silverman G.J. VH3 family antibodies bind domain D of staphylococcal protein A. J. Immunol. 1995;154:6437–6445. PubMed
Jansson B., Uhlen M., Nygren P.A. All individual domains of staphylococcal protein A show Fab binding. FEMS Immunol. Med. Microbiol. 1998;20:69–78. doi: 10.1111/j.1574-695X.1998.tb01112.x. PubMed DOI
Charif D., Thioulouse J., Lobry J.R., Perriere G. Online synonymous codon usage analyses with the ade4 and seqinR packages. Bioinformatics. 2005;21:545–547. doi: 10.1093/bioinformatics/bti037. PubMed DOI
Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645–3647. doi: 10.1093/bioinformatics/btx469. PubMed DOI
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bolotin D.A., Poslavsky S., Mitrophanov I., Shugay M., Mamedov I.Z., Putintseva E.V., Chudakov D.M. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods. 2015;12:380–381. doi: 10.1038/nmeth.3364. PubMed DOI
Manso T., Folch G., Giudicelli V., Jabado-Michaloud J., Kushwaha A., Nguefack Ngoune V., Georga M., Papadaki A., Debbagh C., Pegorier P., et al. IMGT(R) databases, related tools and web resources through three main axes of research and development. Nucleic Acids Res. 2022;50:D1262–D1272. doi: 10.1093/nar/gkab1136. PubMed DOI PMC