The development of a canine single-chain phage antibody library to isolate recombinant antibodies for use in translational cancer research

. 2025 Mar 24 ; 5 (3) : 101008.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40132540
Odkazy

PubMed 40132540
PubMed Central PMC12049728
DOI 10.1016/j.crmeth.2025.101008
PII: S2667-2375(25)00044-X
Knihovny.cz E-zdroje

The development of canine immunotolerant monoclonal antibodies can accelerate the invention of new medicines for both canine and human diseases. We develop a methodology to clone the naive, somatically mutated variable domain repertoire from canine B cell mRNA using 5'RACE PCR. A set of degenerate primers were then designed and used to clone variable domain genes into archival "holding" plasmid libraries. These archived variable domain genes were then combinatorially ligated to produce a scFv M13 phage library. Next-generation long-read and short-read DNA sequencing methodologies were developed to annotate features of the cloned library including CDR diversity and IGHV/IGKV/IGLV subfamily distribution. A synthetic immunoglobulin G was developed from this scFv library to the canine immune checkpoint receptor PD-1. This synthetic platform can be used to clone and annotate archived antibody variable domain genes for use in perpetuity in order to develop improved preclinical models for the treatment of complex human diseases.

Zobrazit více v PubMed

Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

van Helden P.D., van Helden L.S., Hoal E.G. One world, one health. Humans, animals and the environment are inextricably linked--a fact that needs to be remembered and exploited in our modern approach to health. EMBO Rep. 2013;14:497–501. doi: 10.1038/embor.2013.61. PubMed DOI PMC

LeBlanc A.K., Mazcko C.N. Improving human cancer therapy through the evaluation of pet dogs. Nat. Rev. Cancer. 2020;20:727–742. doi: 10.1038/s41568-020-0297-3. PubMed DOI

Pratelli A., Buonavoglia A., Lanave G., Tempesta M., Camero M., Martella V., Decaro N. One world, one health, one virology of the mysterious labyrinth of coronaviruses: the canine coronavirus affair. Lancet Microbe. 2021;2:e646–e647. doi: 10.1016/S2666-5247(21)00282-2. PubMed DOI PMC

Uhl E.W., Warner N.J. Mouse Models as Predictors of Human Responses: Evolutionary Medicine. Curr Pathobiol Rep. 2015;3:219–223. doi: 10.1007/s40139-015-0086-y. PubMed DOI PMC

Masopust D., Sivula C.P., Jameson S.C. Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. J. Immunol. 2017;199:383–388. doi: 10.4049/jimmunol.1700453. PubMed DOI PMC

Khanna C., Lindblad-Toh K., Vail D., London C., Bergman P., Barber L., Breen M., Kitchell B., McNeil E., Modiano J.F., et al. The dog as a cancer model. Nat. Biotechnol. 2006;24:1065–1066. doi: 10.1038/nbt0906-1065b. PubMed DOI

Paoloni M., Khanna C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer. 2008;8:147–156. doi: 10.1038/nrc2273. PubMed DOI

Amin S.B., Anderson K.J., Boudreau C.E., Martinez-Ledesma E., Kocakavuk E., Johnson K.C., Barthel F.P., Varn F.S., Kassab C., Ling X., et al. Comparative Molecular Life History of Spontaneous Canine and Human Gliomas. Cancer Cell. 2020;37:243–257. doi: 10.1016/j.ccell.2020.01.004. PubMed DOI PMC

MacDiarmid J.A., Langova V., Bailey D., Pattison S.T., Pattison S.L., Christensen N., Armstrong L.R., Brahmbhatt V.N., Smolarczyk K., Harrison M.T., et al. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model. PLoS One. 2016;11 doi: 10.1371/journal.pone.0151832. PubMed DOI PMC

Wang G., Wu M., Durham A.C., Radaelli E., Mason N.J., Xu X., Roth D.B. Molecular subtypes in canine hemangiosarcoma reveal similarities with human angiosarcoma. PLoS One. 2020;15 doi: 10.1371/journal.pone.0229728. PubMed DOI PMC

Gellrich F.F., Schmitz M., Beissert S., Meier F. Anti-PD-1 and Novel Combinations in the Treatment of Melanoma-An Update. J. Clin. Med. 2020;9 doi: 10.3390/jcm9010223. PubMed DOI PMC

Scott A.M., Wolchok J.D., Old L.J. Antibody therapy of cancer. Nat. Rev. Cancer. 2012;12:278–287. doi: 10.1038/nrc3236. PubMed DOI

Kulkarni S.S., Falzarano D. Unique aspects of adaptive immunity in camelids and their applications. Mol. Immunol. 2021;134:102–108. doi: 10.1016/j.molimm.2021.03.001. PubMed DOI

Matz H., Dooley H. Shark IgNAR-derived binding domains as potential diagnostic and therapeutic agents. Dev. Comp. Immunol. 2019;90:100–107. doi: 10.1016/j.dci.2018.09.007. PubMed DOI

Hawkins A., Joyce C., Brady K., Hold A., Smith A., Knight M., Howard C., van den Elsen J., Lawson A.D.G., Macpherson A. The proximity of the N- and C- termini of bovine knob domains enable engineering of target specificity into polypeptide chains. mAbs. 2022;14 doi: 10.1080/19420862.2022.2076295. PubMed DOI PMC

McMahon C., Baier A.S., Pascolutti R., Wegrecki M., Zheng S., Ong J.X., Erlandson S.C., Hilger D., Rasmussen S.G.F., Ring A.M., et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 2018;25:289–296. doi: 10.1038/s41594-018-0028-6. PubMed DOI PMC

Marable J., Ruiz D., Jaiswal A.K., Bhattacharya R., Pantazes R., Agarwal P., Suryawanshi A.S., Bedi D., Mishra A., Smith B.F., Sandey M. Nanobody-based CTLA4 inhibitors for immune checkpoint blockade therapy of canine cancer patients. Sci. Rep. 2021;11 doi: 10.1038/s41598-021-00325-3. PubMed DOI PMC

Li D., English H., Hong J., Liang T., Merlino G., Day C.P., Ho M. A novel PD-L1-targeted shark V(NAR) single-domain-based CAR-T cell strategy for treating breast cancer and liver cancer. Mol Ther Oncolytics. 2022;24:849–863. doi: 10.1016/j.omto.2022.02.015. PubMed DOI PMC

Gearing D.P., Virtue E.R., Gearing R.P., Drew A.C. A fully caninised anti-NGF monoclonal antibody for pain relief in dogs. BMC Vet. Res. 2013;9:226. doi: 10.1186/1746-6148-9-226. PubMed DOI PMC

Enomoto M., Mantyh P.W., Murrell J., Innes J.F., Lascelles B.D.X. Anti-nerve growth factor monoclonal antibodies for the control of pain in dogs and cats. Vet. Rec. 2019;184:23. doi: 10.1136/vr.104590. PubMed DOI PMC

Lascelles B.D., Knazovicky D., Case B., Freire M., Innes J.F., Drew A.C., Gearing D.P. A canine-specific anti-nerve growth factor antibody alleviates pain and improves mobility and function in dogs with degenerative joint disease-associated pain. BMC Vet. Res. 2015;11:101. doi: 10.1186/s12917-015-0413-x. PubMed DOI PMC

Igase M., Inanaga S., Tani K., Nakaichi M., Sakai Y., Sakurai M., Kato M., Tsukui T., Mizuno T. Long-term survival of dogs with stage 4 oral malignant melanoma treated with anti-canine PD-1 therapeutic antibody: A follow-up case report. Vet. Comp. Oncol. 2022;20:901–905. doi: 10.1111/vco.12829. PubMed DOI

Igase M., Nemoto Y., Itamoto K., Tani K., Nakaichi M., Sakurai M., Sakai Y., Noguchi S., Kato M., Tsukui T., Mizuno T. A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-75533-4. PubMed DOI PMC

Li G., Ohishi T., Kaneko M.K., Takei J., Mizuno T., Kawada M., Saito M., Suzuki H., Kato Y. Defucosylated Mouse-Dog Chimeric Anti-EGFR Antibody Exerts Antitumor Activities in Mouse Xenograft Models of Canine Tumors. Cells. 2021;10 doi: 10.3390/cells10123599. PubMed DOI PMC

Singer J., Fazekas J., Wang W., Weichselbaumer M., Matz M., Mader A., Steinfellner W., Meitz S., Mechtcheriakova D., Sobanov Y., et al. Generation of a canine anti-EGFR (ErbB-1) antibody for passive immunotherapy in dog cancer patients. Mol. Cancer Therapeut. 2014;13:1777–1790. doi: 10.1158/1535-7163.MCT-13-0288. PubMed DOI PMC

Braganza A., Wallace K., Pell L., Parrish C.R., Siegel D.L., Mason N.J. Generation and validation of canine single chain variable fragment phage display libraries. Vet. Immunol. Immunopathol. 2011;139:27–40. doi: 10.1016/j.vetimm.2010.07.026. PubMed DOI

Cong C., ZhongLing J., RongFeng C., WenRu T., HuaTao L. Construction and panning of canine phage scFv library for dog erythrocyte antigen. Agricultural Biotechnology. 2017;25:901–910.

Ferrara F., Erasmus M.F., D'Angelo S., Leal-Lopes C., Teixeira A.A., Choudhary A., Honnen W., Calianese D., Huang D., Peng L., et al. A pandemic-enabled comparison of discovery platforms demonstrates a naive antibody library can match the best immune-sourced antibodies. Nat. Commun. 2022;13:462. doi: 10.1038/s41467-021-27799-z. PubMed DOI PMC

Freeman J.D., Warren R.L., Webb J.R., Nelson B.H., Holt R.A. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res. 2009;19:1817–1824. doi: 10.1101/gr.092924.109. PubMed DOI PMC

Hwang M.H., Darzentas N., Bienzle D., Moore P.F., Morrison J., Keller S.M. Characterization of the canine immunoglobulin heavy chain repertoire by next generation sequencing. Vet. Immunol. Immunopathol. 2018;202:181–190. doi: 10.1016/j.vetimm.2018.07.002. PubMed DOI

Khanna C., London C., Vail D., Mazcko C., Hirschfeld S. Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin. Cancer Res. 2009;15:5671–5677. doi: 10.1158/1078-0432.CCR-09-0719. PubMed DOI PMC

Keller B.M., Maier J., Secker K.A., Egetemaier S.M., Parfyonova Y., Rothbauer U., Traenkle B. Chromobodies to Quantify Changes of Endogenous Protein Concentration in Living Cells. Mol. Cell. Proteomics. 2018;17:2518–2533. doi: 10.1074/mcp.TIR118.000914. PubMed DOI PMC

Gomes M., Fleck A., Degaugue A., Gourmelon F., Leger C., Aumont-Nicaise M., Mesneau A., Jean-Jacques H., Hassaine G., Urvoas A., et al. Design of an artificial phage-display library based on a new scaffold improved for average stability of the randomized proteins. Sci. Rep. 2023;13:1339. doi: 10.1038/s41598-023-27710-4. PubMed DOI PMC

Cullen J.N., Martin J., Vilella A.J., Treeful A., Sargan D., Bradley A., Friedenberg S.G. Development and application of a next-generation sequencing protocol and bioinformatics pipeline for the comprehensive analysis of the canine immunoglobulin repertoire. PLoS One. 2022;17 doi: 10.1371/journal.pone.0270710. PubMed DOI PMC

Yoshimoto S., Chester N., Xiong A., Radaelli E., Wang H., Brillantes M., Gulendran G., Glassman P., Siegel D.L., Mason N.J. Development and pharmacokinetic assessment of a fully canine anti-PD-1 monoclonal antibody for comparative translational research in dogs with spontaneous tumors. mAbs. 2023;15 doi: 10.1080/19420862.2023.2287250. PubMed DOI PMC

Liu Z., Chen O., Wall J.B.J., Zheng M., Zhou Y., Wang L., Vaseghi H.R., Qian L., Liu J. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci. Rep. 2017;7:2193. doi: 10.1038/s41598-017-02460-2. PubMed DOI PMC

Lin Y., Hung C.Y., Bhattacharya C., Nichols S., Rahimuddin H., Kittur F.S., Leung T., Xie J. An Effective Way of Producing Fully Assembled Antibody in Transgenic Tobacco Plants by Linking Heavy and Light Chains via a Self-Cleaving 2A Peptide. Front. Plant Sci. 2018;9:1379. doi: 10.3389/fpls.2018.01379. PubMed DOI PMC

Ebo J.S., Saunders J.C., Devine P.W.A., Gordon A.M., Warwick A.S., Schiffrin B., Chin S.E., England E., Button J.D., Lloyd C., et al. An in vivo platform to select and evolve aggregation-resistant proteins. Nat. Commun. 2020;11:1816. doi: 10.1038/s41467-020-15667-1. PubMed DOI PMC

Uchanski T., Zogg T., Yin J., Yuan D., Wohlkonig A., Fischer B., Rosenbaum D.M., Kobilka B.K., Pardon E., Steyaert J. An improved yeast surface display platform for the screening of nanobody immune libraries. Sci. Rep. 2019;9:382. doi: 10.1038/s41598-018-37212-3. PubMed DOI PMC

Santos, M. (2015). Developing Synthetic Tools to Image and Modulate the Activity of Carboxyl terminus of Hsc70-Interacting Protein (CHIP). The experimental work described in the thesis was carried out at the Edinburgh Cancer Research Centre (ECRC) of the Institute of Genetics and Molecular Medicine at the University of Edinburgh in the framework of the ERASMUS+ programme. (https://core.ac.uk/download/pdf/143412857.pdf

Mohtar, A. (2018). Novel role of an ER-resident chaperone pathway in cancer signalling. Edinburgh Medical School thesis and dissertation collection. https://era.ed.ac.uk/handle/1842/28765?show=full

Lisowska M., Lickiss F., Gil-Mir M., Huart A.S., Trybala Z., Way L., Hernychova L., Krejci A., Muller P., Krejcir R., et al. Next-generation sequencing of a combinatorial peptide phage library screened against ubiquitin identifies peptide aptamers that can inhibit the in vitro ubiquitin transfer cascade. Front. Microbiol. 2022;13 doi: 10.3389/fmicb.2022.875556. PubMed DOI PMC

Mazor R.D., Nathan N., Gilboa A., Stoler-Barak L., Moss L., Solomonov I., Hanuna A., Divinsky Y., Shmueli M.D., Hezroni H., et al. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell. 2022;185:1208–1222. doi: 10.1016/j.cell.2022.02.012. PubMed DOI

Kavanagh D.M., Smyth A.M., Martin K.J., Dun A., Brown E.R., Gordon S., Smillie K.J., Chamberlain L.H., Wilson R.S., Yang L., et al. A molecular toggle after exocytosis sequesters the presynaptic syntaxin1a molecules involved in prior vesicle fusion. Nat. Commun. 2014;5:5774. doi: 10.1038/ncomms6774. PubMed DOI PMC

Roben P.W., Salem A.N., Silverman G.J. VH3 family antibodies bind domain D of staphylococcal protein A. J. Immunol. 1995;154:6437–6445. PubMed

Jansson B., Uhlen M., Nygren P.A. All individual domains of staphylococcal protein A show Fab binding. FEMS Immunol. Med. Microbiol. 1998;20:69–78. doi: 10.1111/j.1574-695X.1998.tb01112.x. PubMed DOI

Charif D., Thioulouse J., Lobry J.R., Perriere G. Online synonymous codon usage analyses with the ade4 and seqinR packages. Bioinformatics. 2005;21:545–547. doi: 10.1093/bioinformatics/bti037. PubMed DOI

Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645–3647. doi: 10.1093/bioinformatics/btx469. PubMed DOI

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Bolotin D.A., Poslavsky S., Mitrophanov I., Shugay M., Mamedov I.Z., Putintseva E.V., Chudakov D.M. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods. 2015;12:380–381. doi: 10.1038/nmeth.3364. PubMed DOI

Manso T., Folch G., Giudicelli V., Jabado-Michaloud J., Kushwaha A., Nguefack Ngoune V., Georga M., Papadaki A., Debbagh C., Pegorier P., et al. IMGT(R) databases, related tools and web resources through three main axes of research and development. Nucleic Acids Res. 2022;50:D1262–D1272. doi: 10.1093/nar/gkab1136. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...