Magnetically Recyclable Borane Lewis Acid Catalyst for Hydrosilylation of Imines and Reductive Amination of Carbonyls

. 2024 Aug 12 ; 17 (15) : e202400058. [epub] 20240523

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38630961

Grantová podpora
UMO-2018/31/G/ST4/04012 National Science Centre in Poland
CZ.10.03.01/00/22_003/0000048 European Union under the REFRESH - Research Excellence
Operational Programme Just Transition
computer center (CC)
Indian Institute of Technology Kanpur (IITK)
department of chemistry, IITK

Fluorinated arylborane-based Lewis acid catalysts have shown remarkable activity and serve as ideal examples of transition metal-free catalysts for diverse organic transformations. However, their homogeneous nature poses challenges in terms of recyclability and separation from reaction mixtures. This work presents an efficient technique for the heterogenization of boron Lewis acid catalysts by anchoring Piers' borane to allyl-functionalized iron oxide. This catalyst demonstrates excellent activity in the hydrosilylation of imines and the reductive amination of carbonyls using various silanes as reducing agents under mild reaction conditions. The catalyst exhibits broad tolerance towards a wide range of functional substrates. Furthermore, it exhibits good recyclability and can be easily separated from the products using an external magnetic field. This work represents a significant advance in the development of sustainable heterogenous metal-free catalysts for organic transformations.

Zobrazit více v PubMed

A. Trowbridge, S. M. Walton, M. J. Gaunt, Chem. Rev. 2020, 120, 2613–2692;

V. B. Saptal, V. Ruta, M. A. Bajada, G Vilé, Angew. Chem.Int. Ed. 2023, 135, e202219306.

V. S. Shende, V. B. Saptal, B. M. Bhanage, Chem. Rec. 2019, 19, 2022–2043.

C. L. Sun, Z. J. Shi, Chem. Rev. 2014, 114, 9219–9280;

V. B. Saptal, S. M. Gade, G. Vilé, J. Walkowiak, B. M. Bhanage, Sustainable Utilization of Carbon Dioxide, 2023, pp 1–36.

W. E. Piers, T. Chivers, Chem. Soc. Rev. 1997, 26, 345–354;

J. R. Lawson, R. L. Melen, Inorg. Chem. 2017, 56, 8627–8643.

D. W. Stephan, Chem 2020, 6, 1520–1526;

J. Lam, K. M. Szkop, E. Mosaferia, D. W. Stephan, Chem. Soc. Rev. 2019, 48, 3592–3612;

D. W. Stephan Science 2016, 354, 1248;

X. Feng, W. Meng, H. Du, Chem. Soc. Rev. 2023, 52, 8580–8598;

D. W. Stephan, Acc. Chem. Res. 2015, 48 (2), 306–316;

J. Chen, M. McGrew, E. Y.-X. Chen, ChemSusChem 2019, 12, 4543–4569.

B. S. Soller, S. Salzinger, B. Rieger, Chem. Rev. 2016, 116, 1993–2022;

M. Hong, J. Chen, E. Y. Chen, Chem. Rev. 2018, 118, 10551–10616.

J. Paradies, Acc. Chem. Res. 2023, 56 (7), 821–834.

S. Wubbolt, M. Oestreich, Angew. Chem. Int. Ed. Engl. 2015, 54, 15876–15879.

J. Chen, L. Falivene, L. Caporaso, L. Cavallo, E. Y. Chen, J. Am. Chem. Soc. 2016, 138, 5321–5333.

M. A. Legare, M. A. Courtemanche, E. Rochette, F. G. Fontaine, Science 2015, 349, 513–516.

G. Kumar, S. Roy, I. Chatterjee, Org. Biomol. Chem. 2021, 19, 1230–1267.

W. Meng, X. Feng, H. Du, Acc. Chem. Res. 2018, 51, 191–201.

A. Dasgupta, E. Richards, R. L. Melen, ACS Catal. 2022, 12, 442–452.

G. K. Prakash, T. Mathew, G. A. Olah, Acc. Chem. Res. 2012, 45, 565–577.

P. Vermeeren, M. D. Tiezza, M. van Dongen, I. Fernandez, F. M. Bickelhaupt, T. A. Hamlin, Chem. Eur. J. 2021, 27, 10610–10620.

J. Jiang, O. M. Yaghi, Chem. Rev. 2015, 115, 6966–6997.

U. Yolsal, T. A. R. Horton, M. Wang, M. P. Shaver, J. Am. Chem. Soc. 2021, 143 (33), 12980–12984;

F. Vidal, J. McQuade, R. Lalancette, F. Jakle, J. Am. Chem. Soc. 2020, 142, 14427–14431;

L. Chen, R. Liu, X. Hao, Q. Yan, Angew. Chem. Int. Ed. Engl. 2019, 58, 264–268;

Y. Qin, G. Cheng, A. Sundararaman, F. Jäkle, J. Am. Chem. Soc. 2002, 124 (43), 12672–12673;

H. Lin, S. Patel, F. Jäkle, Macromolecules 2020, 53 (23), 10601–10612.

M. V. Zakharova, N. Masoumifard, Y. Hu, J. Han, F. Kleitz, F. G. Fontaine, ACS Appl. Mater. Interfaces. 2018, 10, 13199–13210;

K. Mentoor, L. Twigge, J. W. H. Niemantsverdriet, J. C. Swarts, E. Erasmus, Inorg. Chem. 2021, 60, 55–69;

H. E. Starr, M. R. Gagné, Organometallics 2022, 41, 3152–3160;

J. Xing, J. Buffet, N. H. Rees, P. Nørby, D. O'Hare, Chem. Commun. 2016, 52, 10478–10481;

Y. Wanglee, J. Hu, R. E. White, M. Lee, S. M. Stewart, P. Perrotin, S. L. Scott, J. Am. Chem. Soc. 2012, 134 (1), 355–366.

S. Shyshkanov, T. N. Nguyen, F. M. Ebrahim, K. C. Stylianou, P. J. Dyson, Angew. Chem. Int. Ed. Engl. 2019, 58, 5371–5375.

Y. Ma, S. Zhang, C. R. Chang, Z. Q. Huang, J. C. Ho, Y. Qu, Chem. Soc. Rev. 2018, 47, 5541–5553;

K. C. Szeto, W. Sahyoun, N. Merle, J. L. Castelbou, N. Popoff, F. Lefebvre, J. Raynaud, C. Godard, C. Claver, L. Delevoye, R. M. Gauvinc, M. Taoufik, Catal. Sci. Technol. 2016, 6, 882–889.

K. Stefanowska, A. Franczyk, J. Szyling, K. Salamon, B. Marciniec, J. Walkowiak, J. Catal. 2017, 356, 206–213;

J. Szyling, A. Franczyk, K. Stefanowska, J. Walkowiak, Adv. Synth. Catal. 2018, 360, 2966–2974;

J. Szyling, A. Franczyk, K. Stefanowska, H. Maciejewski, J. Walkowiak, ACS Sustainable Chem. Eng. 2018, 6 (8), 10980–10988;

J. Szyling, A. Franczyk, K. Stefanowska, M. Klarek, H. Maciejewski, J. Walkowiak, ChemCatChem 2018, 10, 531–539;

J. Szyling, A. Franczyk, P. Pawluć, B. Marcinieca, J. Walkowiak, Org. Biomol. Chem. 2017, 15, 3207–3215;

J. Szyling, J. Walkowiak, T. Sokolnicki, A. Franczyk, K. Stefanowska, M. Klarek, J. Catal. 2019, 376, 219–227;

T. Sokolnicki, M. M. Alharbi, Y. Van Ingen, S. Rahim, M. Pramanik, A. Roldan, J. Walkowiak, R. L. Melen, Dalton Trans. 2023, 52, 16118–16122.

V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J. M. Basset, Chem. Rev. 2011, 111, 3036–3075;

M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42, 3371–3393.

D. J. Parks, W. E. Piers, G. P. A. Yap, Organometallics 1998, 17 (25), 5492–5503;

E. A. Patrick, W. E. Piers, Chem. Commun. 2020, 56, 841–853.

A. Cabré, X. Verdaguer, A. Riera, Chem. Rev. 2022, 122 (1), 269–339.

J. M. Blackwell, W. E. Piers, M. Parvez, Org. Lett. 2000, 2 (5), 695–698;

X. Zhan, H. Zhang, Y. Dong, J. Yang, S. He, Z. Shi, L. Tang, J. Wang, J. Org. Chem. 2020, 85 (10), 6578–6592;

J. Hermeke, M. Mewald, M. Oestreich, J. Am. Chem. Soc. 2013, 135 (46), 17537–17546.

O. I. Afanasyev, E. Kuchuk, D. L. Usanov, D. Chusov, Chem. Rev. 2019, 119 (23), 11857–11911.

M. Mewald, M. Oestreich, Chem. Eur. J. 2012, 18, 14079–14084.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...