Study of Direct N7 Regioselective tert-Alkylation of 6-Substituted Purines and Their Modification at Position C6 through O, S, N, and C Substituents

. 2024 Apr 16 ; 9 (15) : 17368-17378. [epub] 20240406

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38645315

A new N7 direct regioselective method allowing the introduction of tert-alkyl groups into appropriate 6-substituted purine derivatives is developed. This method is based on a reaction of N-trimethylsilylated purines with a tert-alkyl halide using SnCl4 as a catalyst. In this work, we study the structure and optimal reaction conditions leading to the N7 isomer and in some cases also to the N9 isomer. The main goal is devoted to preparing 7-(tert-butyl)-6-chloropurine as a suitable compound for other purine transformations. The stability of the tert-butyl group at the N7 position is tested for classic model reactions, leading to the preparation of new 6,7-disubstituted purine derivatives, which is also interesting from the point of view of possible biological activity.

Zobrazit více v PubMed

De Clercq E.; Li G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016, 29 (3), 695–747. 10.1128/CMR.00102-15. PubMed DOI PMC

Parker W. B. Enzymology of Purine and Pyrimidine Antimetabolites Used in the Treatment of Cancer. Chem. Rev. 2009, 109 (7), 2880–2893. 10.1021/cr900028p. PubMed DOI PMC

Duke C. C.; Liepa A. J.; MacLeod J. K.; Letham D. S.; Parker C. W. Synthesis of Raphanatin and Its 6-Benzylaminopurine Analogue. J. Chem. Soc. Chem. Commun. 1975, (24), 964.10.1039/c39750000964. DOI

Schwarz S.; Siewert B.; Csuk R.; Rauter A. P. New Antitumor 6-Chloropurine Nucleosides Inducing Apoptosis and G2/M Cell Cycle Arrest. Eur. J. Med. Chem. 2015, 90, 595–602. 10.1016/j.ejmech.2014.11.019. PubMed DOI

Xavier N. M.; Goncalves-Pereira R.; Jorda R.; Hendrychová D.; Oliveira M. C. Novel Dodecyl-Containing Azido and Glucuronamide-Based Nucleosides Exhibiting Anticancer Potential. Pure Appl. Chem. 2019, 91 (7), 1085–1105. 10.1515/pac-2019-0106. DOI

Xavier N. M.; Schwarz S.; Vaz P. D.; Csuk R.; Rauter A. P. Synthesis of Purine Nucleosides from D-Glucuronic Acid Derivatives and Evaluation of Their Cholinesterase-Inhibitory Activities. Eur. J. Org Chem. 2014, 2014 (13), 2770–2779. 10.1002/ejoc.201301913. DOI

Marcelo F.; Silva F. V. M.; Goulart M.; Justino J.; Sinaÿ P.; Blériot Y.; Rauter A. P. Synthesis of Novel Purine Nucleosides towards a Selective Inhibition of Human Butyrylcholinesterase. Bioorg. Med. Chem. 2009, 17 (14), 5106–5116. 10.1016/j.bmc.2009.05.057. PubMed DOI

Schwarz S.; Csuk R.; Rauter A. P. Microwave-Assisted Synthesis of Novel Purine Nucleosides as Selective Cholinesterase Inhibitors. Org. Biomol. Chem. 2014, 12 (15), 2446–2456. 10.1039/C4OB00142G. PubMed DOI

De Clercq E.; Neyts J. Therapeutic Potential of Nucleoside/Nucleotide Analogues against Poxvirus Infections. Rev. Med. Virol. 2004, 14 (5), 289–300. 10.1002/rmv.439. PubMed DOI

Jähne G.; Kroha H.; Müller A.; Helsberg M.; Winkler I.; Gross G.; Scholl T. Regioselective Synthesis and Antiviral Activity of Purine Nucleoside Analogues with Acyclic Substituents at N7. Angew. Chem., Int. Ed. Engl. 1994, 33 (5), 562–563. 10.1002/anie.199405621. DOI

Reymen D.; Naesens L.; Balzarini J.; Holý A.; Dvořáková H.; De Clercq E. Antiviral Activity of Selected Acyclic Nucleoside Analogues against Human Herpesvirus 6. Antiviral Res. 1995, 28 (4), 343–357. 10.1016/0166-3542(95)00058-5. PubMed DOI

Neyts J.; Andrei G.; Snoeck R.; Jähne G.; Winkler I.; Helsberg M.; Balzarini J.; De Clercq E. The N-7-Substituted Acyclic Nucleoside Analog 2-Amino-7-[(1,3-Dihydroxy-2-Propoxy)Methyl]Purine Is a Potent and Selective Inhibitor of Herpesvirus Replication. Antimicrob. Agents Chemother. 1994, 38 (12), 2710–2716. 10.1128/AAC.38.12.2710. PubMed DOI PMC

Neyts J.; Balzarini J.; Andrei G.; Chaoyong Z.; Snoeck R.; Zimmermann A.; Mertens T.; Karlsson A.; De Clercq E. Intracellular Metabolism of the N7-Substituted Acyclic Nucleoside Analog 2-Amino-7-(1,3-Dihydroxy-2-Propoxymethyl)Purine, a Potent Inhibitor of Herpesvirus Replication. Mol. Pharmacol. 1998, 53 (1), 157–165. 10.1124/mol.53.1.157. PubMed DOI

Neyts J.; De Clercq E. Efficacy of 2-Amino-7-(1,3-Dihydroxy-2-Propoxymethyl)Purine for Treatment of Vaccinia Virus (Orthopoxvirus) Infections in Mice. Antimicrob. Agents Chemother. 2001, 45 (1), 84–87. 10.1128/AAC.45.1.84-87.2001. PubMed DOI PMC

Koszytkowska-Stawińska M.; Kaleta K.; Sas W.; De Clercq E. Synthesis and Antiviral Properties of Aza-Analogues of Acyclovir. Nucleosides, Nucleotides Nucleic Acids 2007, 26 (1), 51–64. 10.1080/15257770601052281. PubMed DOI

Hakimelahi G. H.; Ly T. W.; Moosavi-Movahedi A. A.; Jain M. L.; Zakerinia M.; Davari H.; Mei H.-C.; Sambaiah T.; Moshfegh A. A.; Hakimelahi S. Design, Synthesis, and Biological Evaluation of Novel Nucleoside and Nucleotide Analogues as Agents against DNA Viruses and/or Retroviruses. J. Med. Chem. 2001, 44 (22), 3710–3720. 10.1021/jm010216r. PubMed DOI

Núñez M. C.; Pavani M. G.; Díaz-Gavilán M.; Rodríguez-Serrano F.; Gómez-Vidal J. A.; Marchal J. A.; Aránega A.; Gallo M. A.; Espinosa A.; Campos J. M. Synthesis and Anticancer Activity Studies of Novel 1-(2,3-Dihydro-5H-1,4-Benzodioxepin-3-yl)Uracil and (6′-Substituted)-7- or 9-(2,3-Dihydro-5H-1,4-Benzodioxepin-3-yl)-7H- or 9H-Purines. Tetrahedron 2006, 62 (50), 11724–11733. 10.1016/j.tet.2006.09.039. DOI

Havlíček L.; Hanuš J.; Veselý J.; Leclerc S.; Meijer L.; Shaw G.; Strnad M. Cytokinin-Derived Cyclin-Dependent Kinase Inhibitors: Synthesis and Cdc2 Inhibitory Activity of Olomoucine and Related Compounds. J. Med. Chem. 1997, 40 (4), 408–412. 10.1021/jm960666x. PubMed DOI

Conejo-García A.; Núñez M. C.; Marchal J. A.; Rodríguez-Serrano F.; Aránega A.; Gallo M. A.; Espinosa A.; Campos J. M. Regiospecific Microwave-Assisted Synthesis and Cytotoxic Activity against Human Breast Cancer Cells of (RS)-6-Substituted-7- or 9-(2,3-Dihydro-5H-1,4-Benzodioxepin-3-yl)-7H- or −9H-Purines. Eur. J. Med. Chem. 2008, 43 (8), 1742–1748. 10.1016/j.ejmech.2007.10.025. PubMed DOI

Díaz-Gavilán M.; Gómez-Vidal J. A.; Rodríguez-Serrano F.; Marchal J. A.; Caba O.; Aránega A.; Gallo M. A.; Espinosa A.; Campos J. M. Anticancer Activity of (1,2,3,5-Tetrahydro-4,1-Benzoxazepine-3-Yl)-Pyrimidines and -Purines against the MCF-7 Cell Line: Preliminary CDNA Microarray Studies. Bioorg. Med. Chem. Lett. 2008, 18 (4), 1457–1460. 10.1016/j.bmcl.2007.12.070. PubMed DOI

Ostrov D. A.; Prada J. A. H.; Corsino P. E.; Finton K. A.; Le N.; Rowe T. C. Discovery of Novel DNA Gyrase Inhibitors by High-Throughput Virtual Screening. Antimicrob. Agents Chemother. 2007, 51 (10), 3688–3698. 10.1128/AAC.00392-07. PubMed DOI PMC

McKenzie T. C.; Epstein J. W. Coupling of Diazopurines, a Curious Steric Effect in a Free Radical Reaction. J. Org. Chem. 1982, 47 (25), 4881–4884. 10.1021/jo00146a013. DOI

Cěsnek M.; Holý A.; Masojídková M. 6-Guanidinopurine Nucleosides and Their Analogues. Tetrahedron 2002, 58 (15), 2985–2996. 10.1016/S0040-4020(02)00186-2. DOI

Zatloukal M.; Jorda R.; Gucký T.; Řezníčková E.; Voller J.; Pospíšil T.; Malínková V.; Adamcová H.; Kryštof V.; Strnad M. Synthesis and in Vitro Biological Evaluation of 2,6,9-Trisubstituted Purines Targeting Multiple Cyclin-Dependent Kinases. Eur. J. Med. Chem. 2013, 61, 61–72. 10.1016/j.ejmech.2012.06.036. PubMed DOI

Kania J.; Gundersen L. L. Synthesis of N-Alkenylpurines by Rearrangements of the Corresponding N-Allyl Isomers: Scopes and Limitations. Eur. J. Org Chem. 2013, 2013 (10), 2008–2019. 10.1002/ejoc.201201455. DOI

Hocek M.; Dvořáková H.; Císařová I. Covalent Analogues of DNA Base-Pairs and Triplets V. Synthesis of Purine-Purine and Purine-Pyrimidine Conjugates Connected by Diverse Types of Acyclic Carbon Linkages. Collect. Czech. Chem. Commun. 2002, 67 (10), 1560–1578. 10.1135/cccc20021560. DOI

Bookser B. C.; Weinhouse M. I.; Burns A. C.; Valiere A. N.; Valdez L. J.; Stanczak P.; Na J.; Rheingold A. L.; Moore C. E.; Dyck B. Solvent-Controlled, Site-Selective N-Alkylation Reactions of Azolo-Fused Ring Heterocycles at N1-N2-and N3-Positions, Including Pyrazolo[3,4-d]Pyrimidines, Purines, [1,2,3]Triazolo[4,5]Pyridines, and Related Deaza-Compounds. J. Org. Chem. 2018, 83 (12), 6334–6353. 10.1021/acs.joc.8b00540. PubMed DOI

Chen S.; Graceffa R. F.; Boezio A. A. Direct, Regioselective N-Alkylation of 1,3-Azoles. Org. Lett. 2016, 18 (1), 16–19. 10.1021/acs.orglett.5b02994. PubMed DOI

Kotek V.; Chudíková N.; Tobrman T.; Dvořák D. Selective Synthesis of 7-Substituted Purines via 7,8-Dihydropurines. Org. Lett. 2010, 12 (24), 5724–5727. 10.1021/ol1025525. PubMed DOI

Dvořák D.; Kotek V.; Tobrman T. Highly Efficient and Broad-Scope Protocol for the Preparation of 7-Substituted 6-Halopurines via N9-Boc-Protected 7,8-Dihydropurines. Synthesis 2012, 2012 (04), 610–618. 10.1055/s-0031-1290068. DOI

Prasad R. N.; Robins R. K. Potential Purine Antagonists. VIII. The Preparation of Some 7-Methylpurines. J. Am. Chem. Soc. 1957, 79 (24), 6401–6407. 10.1021/ja01581a015. DOI

Gonnella N. C.; Nakanishi H.; Holtwick J. B.; Horowitz D. S.; Kanamori K.; Leonard N. J.; Roberts J. D. Studies of Tautomers and Protonation of Adenine and Its Derivatives by Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy. J. Am. Chem. Soc. 1983, 105 (7), 2050–2055. 10.1021/ja00345a063. DOI

Montgomery J. A.; Hewson K. 7 - Substituted 7H-Purines. J. Org. Chem. 1961, 26 (11), 4469–4472. 10.1021/jo01069a066. DOI

Ibrahim N.; Legraverend M. Synthesis of 6,7,8-Trisubstituted Purines via a Copper-Catalyzed Amidation Reaction. J. Org. Chem. 2009, 74 (1), 463–465. 10.1021/jo802248g. PubMed DOI

Novosjolova I.; Turks M.; Sebris A. Synthesis of 7-Arylpurines from Substituted Pyrimidines. Synthesis 2022, 54 (24), 5529–5539. 10.1055/a-1898-9675. DOI

Dalby C.; Bleasdale C.; Clegg W.; Elsegood M. R. J.; Golding B. T.; Griffin R. J. Regiospecific Alkylation of 6-Chloropurine and 2,6-Dichloropurine at N7 by Transient Protection of N3/N9 by Methylcobaloxime. Angew. Chem., Int. Ed. Engl. 1993, 32 (12), 1696–1697. 10.1002/anie.199316961. DOI

Kohda K.; Baba K.; Kawazoe Y. Chemical Reactivity of Alkylguanines. I. Methylation of O6-Methylguanine Derivatives. Tetrahedron Lett. 1987, 28 (50), 6285–6288. 10.1016/S0040-4039(01)91353-X. DOI

Singh D.; Wani M. J.; Kumar A. A Simple Solution to the Age Old Problem of Regioselective Functionalization of Guanine: First Practical Synthesis of Acyclic N 9 - and/or N 7-Guanine Nucleosides Starting from N2, N9-Diacetylguanine. J. Org. Chem. 1999, 64 (13), 4665–4668. 10.1021/jo982304y. PubMed DOI

Pappo D.; Kashman Y. Synthesis of 9-Substituted Tetrahydrodiazepinopurines—Asmarine A Analogues. Tetrahedron 2003, 59 (34), 6493–6501. 10.1016/S0040-4020(03)01058-5. DOI

Pappo D.; Shimony S.; Kashman Y. Synthesis of 9-Substituted Tetrahydrodiazepinopurines: Studies toward the Total Synthesis of Asmarines. J. Org. Chem. 2005, 70 (1), 199–206. 10.1021/jo048622g. PubMed DOI

Vorbrüggen H.; Ruh-Pohlenz C.. Synthesis Of Nucleosides. In Organic Reactions; Wiley, 1999; pp 1–630.

Framski G.; Gdaniec Z.; Gdaniec M.; Boryski J. A Reinvestigated Mechanism of Ribosylation of Adenine under Silylating Conditions. Tetrahedron 2006, 62 (43), 10123–10129. 10.1016/j.tet.2006.08.046. DOI

Poopeiko N. E.; Kvasyuk E. I.; Mikhailopulo I. A.; Lidaks M. J. Stereospecific Synthesis of β-D-Xylofuranosides of Adenine and Guanine. Synthesis 1985, 1985 (6/7), 605–609. 10.1055/s-1985-34138. DOI

Garner P.; Ramakanth S. A Regiocontrolled Synthesis of N7- and N9-Guanine Nucleosides. J. Org. Chem. 1988, 53 (6), 1294–1298. 10.1021/jo00241a032. DOI

Robins M. J.; Zou R.; Guo Z.; Wnuk S. F. Nucleic Acid Related Compounds. 93. A Solution for the Historic Problem of Regioselective Sugar-Base Coupling To Produce 9-Glycosylguanines or 7-Glycosylguanines 1. J. Org. Chem. 1996, 61 (26), 9207–9212. 10.1021/jo9617023. DOI

Tranová L.; Stýskala J. Study of the N7 Regioselective Glycosylation of 6-Chloropurine and 2,6-Dichloropurine with Tin and Titanium Tetrachloride. J. Org. Chem. 2021, 86 (19), 13265–13275. 10.1021/acs.joc.1c01186. PubMed DOI

Kim B. Y.; Ahn J. B.; Lee H. W.; Kang S. K.; Lee J. H.; Shin J. S.; Ahn S. K.; Hong C. II; Yoon S. S. Synthesis and Biological Activity of Novel Substituted Pyridines and Purines Containing 2,4-Thiazolidinedione. Eur. J. Med. Chem. 2004, 39 (5), 433–447. 10.1016/j.ejmech.2004.03.001. PubMed DOI

Lu W.; Sengupta S.; Petersen J. L.; Akhmedov N. G.; Shi X. Mitsunobu Coupling of Nucleobases and Alcohols: An Efficient, Practical Synthesis for Novel Nonsugar Carbon Nucleosides. J. Org. Chem. 2007, 72 (13), 5012–5015. 10.1021/jo070515+. PubMed DOI

Toma M.; Božičević L.; Lapić J.; Djaković S.; Šakić D.; Tandarić T.; Vianello R.; Vrček V. Transacylation in Ferrocenoyl-Purines. NMR and Computational Study of the Isomerization Mechanism. J. Org. Chem. 2019, 84 (19), 12471–12480. 10.1021/acs.joc.9b01944. PubMed DOI

Ried W.; Woithe H.; Müller A. Strukturaufklärung von N6-9- Und 7-Acyladeninen Durch 1H-Und 13C-NMR-Spektroskopie von Festkörpern Und in Lösung. Helv. Chim. Acta 1989, 72 (7), 1597–1607. 10.1002/hlca.19890720720. DOI

Kelley J. L.; Bullock R. M.; Krochmal M. P.; McLean E. W.; Linn J. A.; Durcan M. J.; Cooper B. R. 6-(Alkylamino)-9-Alkylpurines. A New Class of Potential Antipsychotic Agents. J. Med. Chem. 1997, 40 (20), 3207–3216. 10.1021/jm960662s. PubMed DOI

Maryška M.; Chudíková N.; Kotek V.; Dvořák D.; Tobrman T. Regioselective and Efficient Synthesis of N 7-Substituted Adenines, Guanines, and 6-Mercaptopurines. Monatshefte für Chemie - Chem. Mon. 2013, 144 (4), 501–507. 10.1007/s00706-012-0899-x. DOI

Staderini M.; Bolognesi M. L.; Menéndez J. C. Lewis Acid-Catalyzed Generation of C-C and C-N Bonds on π-Deficient Heterocyclic Substrates. Adv. Synth. Catal. 2015, 357 (1), 185–195. 10.1002/adsc.201400674. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...