Study of Direct N7 Regioselective tert-Alkylation of 6-Substituted Purines and Their Modification at Position C6 through O, S, N, and C Substituents
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38645315
PubMed Central
PMC11024948
DOI
10.1021/acsomega.4c00068
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A new N7 direct regioselective method allowing the introduction of tert-alkyl groups into appropriate 6-substituted purine derivatives is developed. This method is based on a reaction of N-trimethylsilylated purines with a tert-alkyl halide using SnCl4 as a catalyst. In this work, we study the structure and optimal reaction conditions leading to the N7 isomer and in some cases also to the N9 isomer. The main goal is devoted to preparing 7-(tert-butyl)-6-chloropurine as a suitable compound for other purine transformations. The stability of the tert-butyl group at the N7 position is tested for classic model reactions, leading to the preparation of new 6,7-disubstituted purine derivatives, which is also interesting from the point of view of possible biological activity.
Zobrazit více v PubMed
De Clercq E.; Li G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016, 29 (3), 695–747. 10.1128/CMR.00102-15. PubMed DOI PMC
Parker W. B. Enzymology of Purine and Pyrimidine Antimetabolites Used in the Treatment of Cancer. Chem. Rev. 2009, 109 (7), 2880–2893. 10.1021/cr900028p. PubMed DOI PMC
Duke C. C.; Liepa A. J.; MacLeod J. K.; Letham D. S.; Parker C. W. Synthesis of Raphanatin and Its 6-Benzylaminopurine Analogue. J. Chem. Soc. Chem. Commun. 1975, (24), 964.10.1039/c39750000964. DOI
Schwarz S.; Siewert B.; Csuk R.; Rauter A. P. New Antitumor 6-Chloropurine Nucleosides Inducing Apoptosis and G2/M Cell Cycle Arrest. Eur. J. Med. Chem. 2015, 90, 595–602. 10.1016/j.ejmech.2014.11.019. PubMed DOI
Xavier N. M.; Goncalves-Pereira R.; Jorda R.; Hendrychová D.; Oliveira M. C. Novel Dodecyl-Containing Azido and Glucuronamide-Based Nucleosides Exhibiting Anticancer Potential. Pure Appl. Chem. 2019, 91 (7), 1085–1105. 10.1515/pac-2019-0106. DOI
Xavier N. M.; Schwarz S.; Vaz P. D.; Csuk R.; Rauter A. P. Synthesis of Purine Nucleosides from D-Glucuronic Acid Derivatives and Evaluation of Their Cholinesterase-Inhibitory Activities. Eur. J. Org Chem. 2014, 2014 (13), 2770–2779. 10.1002/ejoc.201301913. DOI
Marcelo F.; Silva F. V. M.; Goulart M.; Justino J.; Sinaÿ P.; Blériot Y.; Rauter A. P. Synthesis of Novel Purine Nucleosides towards a Selective Inhibition of Human Butyrylcholinesterase. Bioorg. Med. Chem. 2009, 17 (14), 5106–5116. 10.1016/j.bmc.2009.05.057. PubMed DOI
Schwarz S.; Csuk R.; Rauter A. P. Microwave-Assisted Synthesis of Novel Purine Nucleosides as Selective Cholinesterase Inhibitors. Org. Biomol. Chem. 2014, 12 (15), 2446–2456. 10.1039/C4OB00142G. PubMed DOI
De Clercq E.; Neyts J. Therapeutic Potential of Nucleoside/Nucleotide Analogues against Poxvirus Infections. Rev. Med. Virol. 2004, 14 (5), 289–300. 10.1002/rmv.439. PubMed DOI
Jähne G.; Kroha H.; Müller A.; Helsberg M.; Winkler I.; Gross G.; Scholl T. Regioselective Synthesis and Antiviral Activity of Purine Nucleoside Analogues with Acyclic Substituents at N7. Angew. Chem., Int. Ed. Engl. 1994, 33 (5), 562–563. 10.1002/anie.199405621. DOI
Reymen D.; Naesens L.; Balzarini J.; Holý A.; Dvořáková H.; De Clercq E. Antiviral Activity of Selected Acyclic Nucleoside Analogues against Human Herpesvirus 6. Antiviral Res. 1995, 28 (4), 343–357. 10.1016/0166-3542(95)00058-5. PubMed DOI
Neyts J.; Andrei G.; Snoeck R.; Jähne G.; Winkler I.; Helsberg M.; Balzarini J.; De Clercq E. The N-7-Substituted Acyclic Nucleoside Analog 2-Amino-7-[(1,3-Dihydroxy-2-Propoxy)Methyl]Purine Is a Potent and Selective Inhibitor of Herpesvirus Replication. Antimicrob. Agents Chemother. 1994, 38 (12), 2710–2716. 10.1128/AAC.38.12.2710. PubMed DOI PMC
Neyts J.; Balzarini J.; Andrei G.; Chaoyong Z.; Snoeck R.; Zimmermann A.; Mertens T.; Karlsson A.; De Clercq E. Intracellular Metabolism of the N7-Substituted Acyclic Nucleoside Analog 2-Amino-7-(1,3-Dihydroxy-2-Propoxymethyl)Purine, a Potent Inhibitor of Herpesvirus Replication. Mol. Pharmacol. 1998, 53 (1), 157–165. 10.1124/mol.53.1.157. PubMed DOI
Neyts J.; De Clercq E. Efficacy of 2-Amino-7-(1,3-Dihydroxy-2-Propoxymethyl)Purine for Treatment of Vaccinia Virus (Orthopoxvirus) Infections in Mice. Antimicrob. Agents Chemother. 2001, 45 (1), 84–87. 10.1128/AAC.45.1.84-87.2001. PubMed DOI PMC
Koszytkowska-Stawińska M.; Kaleta K.; Sas W.; De Clercq E. Synthesis and Antiviral Properties of Aza-Analogues of Acyclovir. Nucleosides, Nucleotides Nucleic Acids 2007, 26 (1), 51–64. 10.1080/15257770601052281. PubMed DOI
Hakimelahi G. H.; Ly T. W.; Moosavi-Movahedi A. A.; Jain M. L.; Zakerinia M.; Davari H.; Mei H.-C.; Sambaiah T.; Moshfegh A. A.; Hakimelahi S. Design, Synthesis, and Biological Evaluation of Novel Nucleoside and Nucleotide Analogues as Agents against DNA Viruses and/or Retroviruses. J. Med. Chem. 2001, 44 (22), 3710–3720. 10.1021/jm010216r. PubMed DOI
Núñez M. C.; Pavani M. G.; Díaz-Gavilán M.; Rodríguez-Serrano F.; Gómez-Vidal J. A.; Marchal J. A.; Aránega A.; Gallo M. A.; Espinosa A.; Campos J. M. Synthesis and Anticancer Activity Studies of Novel 1-(2,3-Dihydro-5H-1,4-Benzodioxepin-3-yl)Uracil and (6′-Substituted)-7- or 9-(2,3-Dihydro-5H-1,4-Benzodioxepin-3-yl)-7H- or 9H-Purines. Tetrahedron 2006, 62 (50), 11724–11733. 10.1016/j.tet.2006.09.039. DOI
Havlíček L.; Hanuš J.; Veselý J.; Leclerc S.; Meijer L.; Shaw G.; Strnad M. Cytokinin-Derived Cyclin-Dependent Kinase Inhibitors: Synthesis and Cdc2 Inhibitory Activity of Olomoucine and Related Compounds. J. Med. Chem. 1997, 40 (4), 408–412. 10.1021/jm960666x. PubMed DOI
Conejo-García A.; Núñez M. C.; Marchal J. A.; Rodríguez-Serrano F.; Aránega A.; Gallo M. A.; Espinosa A.; Campos J. M. Regiospecific Microwave-Assisted Synthesis and Cytotoxic Activity against Human Breast Cancer Cells of (RS)-6-Substituted-7- or 9-(2,3-Dihydro-5H-1,4-Benzodioxepin-3-yl)-7H- or −9H-Purines. Eur. J. Med. Chem. 2008, 43 (8), 1742–1748. 10.1016/j.ejmech.2007.10.025. PubMed DOI
Díaz-Gavilán M.; Gómez-Vidal J. A.; Rodríguez-Serrano F.; Marchal J. A.; Caba O.; Aránega A.; Gallo M. A.; Espinosa A.; Campos J. M. Anticancer Activity of (1,2,3,5-Tetrahydro-4,1-Benzoxazepine-3-Yl)-Pyrimidines and -Purines against the MCF-7 Cell Line: Preliminary CDNA Microarray Studies. Bioorg. Med. Chem. Lett. 2008, 18 (4), 1457–1460. 10.1016/j.bmcl.2007.12.070. PubMed DOI
Ostrov D. A.; Prada J. A. H.; Corsino P. E.; Finton K. A.; Le N.; Rowe T. C. Discovery of Novel DNA Gyrase Inhibitors by High-Throughput Virtual Screening. Antimicrob. Agents Chemother. 2007, 51 (10), 3688–3698. 10.1128/AAC.00392-07. PubMed DOI PMC
McKenzie T. C.; Epstein J. W. Coupling of Diazopurines, a Curious Steric Effect in a Free Radical Reaction. J. Org. Chem. 1982, 47 (25), 4881–4884. 10.1021/jo00146a013. DOI
Cěsnek M.; Holý A.; Masojídková M. 6-Guanidinopurine Nucleosides and Their Analogues. Tetrahedron 2002, 58 (15), 2985–2996. 10.1016/S0040-4020(02)00186-2. DOI
Zatloukal M.; Jorda R.; Gucký T.; Řezníčková E.; Voller J.; Pospíšil T.; Malínková V.; Adamcová H.; Kryštof V.; Strnad M. Synthesis and in Vitro Biological Evaluation of 2,6,9-Trisubstituted Purines Targeting Multiple Cyclin-Dependent Kinases. Eur. J. Med. Chem. 2013, 61, 61–72. 10.1016/j.ejmech.2012.06.036. PubMed DOI
Kania J.; Gundersen L. L. Synthesis of N-Alkenylpurines by Rearrangements of the Corresponding N-Allyl Isomers: Scopes and Limitations. Eur. J. Org Chem. 2013, 2013 (10), 2008–2019. 10.1002/ejoc.201201455. DOI
Hocek M.; Dvořáková H.; Císařová I. Covalent Analogues of DNA Base-Pairs and Triplets V. Synthesis of Purine-Purine and Purine-Pyrimidine Conjugates Connected by Diverse Types of Acyclic Carbon Linkages. Collect. Czech. Chem. Commun. 2002, 67 (10), 1560–1578. 10.1135/cccc20021560. DOI
Bookser B. C.; Weinhouse M. I.; Burns A. C.; Valiere A. N.; Valdez L. J.; Stanczak P.; Na J.; Rheingold A. L.; Moore C. E.; Dyck B. Solvent-Controlled, Site-Selective N-Alkylation Reactions of Azolo-Fused Ring Heterocycles at N1-N2-and N3-Positions, Including Pyrazolo[3,4-d]Pyrimidines, Purines, [1,2,3]Triazolo[4,5]Pyridines, and Related Deaza-Compounds. J. Org. Chem. 2018, 83 (12), 6334–6353. 10.1021/acs.joc.8b00540. PubMed DOI
Chen S.; Graceffa R. F.; Boezio A. A. Direct, Regioselective N-Alkylation of 1,3-Azoles. Org. Lett. 2016, 18 (1), 16–19. 10.1021/acs.orglett.5b02994. PubMed DOI
Kotek V.; Chudíková N.; Tobrman T.; Dvořák D. Selective Synthesis of 7-Substituted Purines via 7,8-Dihydropurines. Org. Lett. 2010, 12 (24), 5724–5727. 10.1021/ol1025525. PubMed DOI
Dvořák D.; Kotek V.; Tobrman T. Highly Efficient and Broad-Scope Protocol for the Preparation of 7-Substituted 6-Halopurines via N9-Boc-Protected 7,8-Dihydropurines. Synthesis 2012, 2012 (04), 610–618. 10.1055/s-0031-1290068. DOI
Prasad R. N.; Robins R. K. Potential Purine Antagonists. VIII. The Preparation of Some 7-Methylpurines. J. Am. Chem. Soc. 1957, 79 (24), 6401–6407. 10.1021/ja01581a015. DOI
Gonnella N. C.; Nakanishi H.; Holtwick J. B.; Horowitz D. S.; Kanamori K.; Leonard N. J.; Roberts J. D. Studies of Tautomers and Protonation of Adenine and Its Derivatives by Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy. J. Am. Chem. Soc. 1983, 105 (7), 2050–2055. 10.1021/ja00345a063. DOI
Montgomery J. A.; Hewson K. 7 - Substituted 7H-Purines. J. Org. Chem. 1961, 26 (11), 4469–4472. 10.1021/jo01069a066. DOI
Ibrahim N.; Legraverend M. Synthesis of 6,7,8-Trisubstituted Purines via a Copper-Catalyzed Amidation Reaction. J. Org. Chem. 2009, 74 (1), 463–465. 10.1021/jo802248g. PubMed DOI
Novosjolova I.; Turks M.; Sebris A. Synthesis of 7-Arylpurines from Substituted Pyrimidines. Synthesis 2022, 54 (24), 5529–5539. 10.1055/a-1898-9675. DOI
Dalby C.; Bleasdale C.; Clegg W.; Elsegood M. R. J.; Golding B. T.; Griffin R. J. Regiospecific Alkylation of 6-Chloropurine and 2,6-Dichloropurine at N7 by Transient Protection of N3/N9 by Methylcobaloxime. Angew. Chem., Int. Ed. Engl. 1993, 32 (12), 1696–1697. 10.1002/anie.199316961. DOI
Kohda K.; Baba K.; Kawazoe Y. Chemical Reactivity of Alkylguanines. I. Methylation of O6-Methylguanine Derivatives. Tetrahedron Lett. 1987, 28 (50), 6285–6288. 10.1016/S0040-4039(01)91353-X. DOI
Singh D.; Wani M. J.; Kumar A. A Simple Solution to the Age Old Problem of Regioselective Functionalization of Guanine: First Practical Synthesis of Acyclic N 9 - and/or N 7-Guanine Nucleosides Starting from N2, N9-Diacetylguanine. J. Org. Chem. 1999, 64 (13), 4665–4668. 10.1021/jo982304y. PubMed DOI
Pappo D.; Kashman Y. Synthesis of 9-Substituted Tetrahydrodiazepinopurines—Asmarine A Analogues. Tetrahedron 2003, 59 (34), 6493–6501. 10.1016/S0040-4020(03)01058-5. DOI
Pappo D.; Shimony S.; Kashman Y. Synthesis of 9-Substituted Tetrahydrodiazepinopurines: Studies toward the Total Synthesis of Asmarines. J. Org. Chem. 2005, 70 (1), 199–206. 10.1021/jo048622g. PubMed DOI
Vorbrüggen H.; Ruh-Pohlenz C.. Synthesis Of Nucleosides. In Organic Reactions; Wiley, 1999; pp 1–630.
Framski G.; Gdaniec Z.; Gdaniec M.; Boryski J. A Reinvestigated Mechanism of Ribosylation of Adenine under Silylating Conditions. Tetrahedron 2006, 62 (43), 10123–10129. 10.1016/j.tet.2006.08.046. DOI
Poopeiko N. E.; Kvasyuk E. I.; Mikhailopulo I. A.; Lidaks M. J. Stereospecific Synthesis of β-D-Xylofuranosides of Adenine and Guanine. Synthesis 1985, 1985 (6/7), 605–609. 10.1055/s-1985-34138. DOI
Garner P.; Ramakanth S. A Regiocontrolled Synthesis of N7- and N9-Guanine Nucleosides. J. Org. Chem. 1988, 53 (6), 1294–1298. 10.1021/jo00241a032. DOI
Robins M. J.; Zou R.; Guo Z.; Wnuk S. F. Nucleic Acid Related Compounds. 93. A Solution for the Historic Problem of Regioselective Sugar-Base Coupling To Produce 9-Glycosylguanines or 7-Glycosylguanines 1. J. Org. Chem. 1996, 61 (26), 9207–9212. 10.1021/jo9617023. DOI
Tranová L.; Stýskala J. Study of the N7 Regioselective Glycosylation of 6-Chloropurine and 2,6-Dichloropurine with Tin and Titanium Tetrachloride. J. Org. Chem. 2021, 86 (19), 13265–13275. 10.1021/acs.joc.1c01186. PubMed DOI
Kim B. Y.; Ahn J. B.; Lee H. W.; Kang S. K.; Lee J. H.; Shin J. S.; Ahn S. K.; Hong C. II; Yoon S. S. Synthesis and Biological Activity of Novel Substituted Pyridines and Purines Containing 2,4-Thiazolidinedione. Eur. J. Med. Chem. 2004, 39 (5), 433–447. 10.1016/j.ejmech.2004.03.001. PubMed DOI
Lu W.; Sengupta S.; Petersen J. L.; Akhmedov N. G.; Shi X. Mitsunobu Coupling of Nucleobases and Alcohols: An Efficient, Practical Synthesis for Novel Nonsugar Carbon Nucleosides. J. Org. Chem. 2007, 72 (13), 5012–5015. 10.1021/jo070515+. PubMed DOI
Toma M.; Božičević L.; Lapić J.; Djaković S.; Šakić D.; Tandarić T.; Vianello R.; Vrček V. Transacylation in Ferrocenoyl-Purines. NMR and Computational Study of the Isomerization Mechanism. J. Org. Chem. 2019, 84 (19), 12471–12480. 10.1021/acs.joc.9b01944. PubMed DOI
Ried W.; Woithe H.; Müller A. Strukturaufklärung von N6-9- Und 7-Acyladeninen Durch 1H-Und 13C-NMR-Spektroskopie von Festkörpern Und in Lösung. Helv. Chim. Acta 1989, 72 (7), 1597–1607. 10.1002/hlca.19890720720. DOI
Kelley J. L.; Bullock R. M.; Krochmal M. P.; McLean E. W.; Linn J. A.; Durcan M. J.; Cooper B. R. 6-(Alkylamino)-9-Alkylpurines. A New Class of Potential Antipsychotic Agents. J. Med. Chem. 1997, 40 (20), 3207–3216. 10.1021/jm960662s. PubMed DOI
Maryška M.; Chudíková N.; Kotek V.; Dvořák D.; Tobrman T. Regioselective and Efficient Synthesis of N 7-Substituted Adenines, Guanines, and 6-Mercaptopurines. Monatshefte für Chemie - Chem. Mon. 2013, 144 (4), 501–507. 10.1007/s00706-012-0899-x. DOI
Staderini M.; Bolognesi M. L.; Menéndez J. C. Lewis Acid-Catalyzed Generation of C-C and C-N Bonds on π-Deficient Heterocyclic Substrates. Adv. Synth. Catal. 2015, 357 (1), 185–195. 10.1002/adsc.201400674. DOI