Anti-Candida activity and biocompatibility of silver nanoparticles associated with denture glaze: a new approach to the management of denture stomatitis

. 2024 Dec ; 69 (6) : 1229-1246. [epub] 20240423

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38652435

Grantová podpora
312182/2021-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Odkazy

PubMed 38652435
DOI 10.1007/s12223-024-01161-4
PII: 10.1007/s12223-024-01161-4
Knihovny.cz E-zdroje

The association of silver nanoparticles (AgNps) to sealant agent Palaseal® can be a promising alternative for complete denture wearers who may develop denture stomatitis (DS). The study aimed to evaluate the anti-Candida and biocompatible potential of silver nanoparticles synthesized by three routes associated with denture glaze to prevent and/or treat oral candidiasis. Surface acrylic resin specimens were treated with different associations of glaze with AgNps (VER+AgUV, VER+AgTurk and VER+AgGm). As controls, specimens were treated with glaze+nystatin (VER+Nyst), glaze only (VER) or submerged in PBS (PBS). Afterwards, Candida albicans biofilm was developed for 24 h, 15 d and 30 d. Subsequently, the biofilm was quantified by CFU/mL, XTT assay and confocal laser scanning microscopy. Fibroblasts were submitted to conditioned medium with the same associations for 24, 48 and 72 h and LIVE/DEAD® viability test was carried out. Regardless of the period, there was a significant reduction (p < 0.01) of viable fungal cells load, as well as inhibition of fungal metabolic activity, in specimens treated with glaze+AgNps associations, compared to VER and PBS. The anti-Candida effects of the associations were similar to the VER+Nyst group, with emphasis on VER+AgGm, which showed the highest percentage values of non-viable fungal cells maintained over time. The associations did not prove toxicity to fibroblasts. The AgNps exerted antimicrobial activity against C. albicans biofilms and are biocompatible. The most effective results were achieved with the association of glaze+silver nanoparticles synthesized by the green chemistry method (AgGm), proving to be an innovative alternative in the management of DS.

Zobrazit více v PubMed

Abbasi E, Milani M, Fekri Aval S et al (2016) Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit Rev Microbiol 42:173–180. https://doi.org/10.3109/1040841X.2014.912200 PubMed DOI

Acosta-Torres LS, Mendieta I, Nuñez-Anita RE et al (2012) Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine 7:4777–4786. https://doi.org/10.2147/IJN.S3239 PubMed DOI PMC

Agnihotri R, Gaur S, Albin S (2020) Nanometals in dentistry: applications and toxicological implications-a systematic review. Biol Trace Elem Res 197:70–88. https://doi.org/10.1007/s12011-019-01986-y PubMed DOI

Ahmad N, Jafri Z, Khan ZH (2020) Evaluation of nanomaterials to prevent oral Candidiasis in PMMA based denture wearing patients. A systematic analysis. J Oral Biol Craniofac Res 10:189–193. https://doi.org/10.1016/j.jobcr.2020.04.012 PubMed DOI PMC

Alfagih MI (2023) Potential Toxicity of Nanoparticles for the Oral Delivery of Therapeutics. IntechOpen. https://doi.org/10.5772/intechopen.111946 DOI

Ali SG, Jalal M, Ahmad H et al (2022) Green synthesis of silver nanoparticles from Camellia sinensis and its antimicrobial and antibiofilm effect against clinical isolates. Materials (Basel) 15:6978. https://doi.org/10.3390/ma15196978 PubMed DOI

Almatroudi A (2020) Silver nanoparticles: synthesis, characterization and biomedical applications. Open Life Sci 15:819–839. https://doi.org/10.1515/biol-2020-0094 PubMed DOI PMC

Almeida NLM, Saldanha LL, da Silva RA et al (2018) Antimicrobial activity of denture adhesive associated with Equisetum giganteum- and Punica granatum-enriched fractions against Candida albicans biofilms on acrylic resin surfaces. Biofouling 34:62–73. https://doi.org/10.1080/08927014.2017.1407408 PubMed DOI

Al-Otibi FO, Yassin MT, Al-Askar AA et al (2023) Green biofabrication of silver nanoparticles of potential synergistic activity with antibacterial and antifungal agents against some nosocomial pathogens. Microorganisms 11:945. https://doi.org/10.3390/microorganisms11040945 PubMed DOI PMC

Al-Rifaiy MQ (2010) The effect of mechanical and chemical polishing techniques on the surface roughness of denture base acrylic resins. Saudi Dent J 22:13–17. https://doi.org/10.1016/j.sdentj.2009.12.006 PubMed DOI

Anwar MF, Yadav D, Jain S et al (2016) Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff. Int J Nanomedicine 11:147–161. https://doi.org/10.2147/IJN.S86828 PubMed DOI PMC

Aziz SG, Aziz SG, Akbarzadeh A (2017) Advances in silver nanotechnology: an update on biomedical applications and future perspectives. Drug Res (Stuttg) 67:198–203. https://doi.org/10.1055/s-0042-112810 PubMed DOI

Bahmanyar Z, Mohammadi F, Gholami A et al (2023) Effect of different physical factors on the synthesis of spherical gold nanoparticles towards cost-effective biomedical applications. IET Nanobiotechnol 17:1–12. https://doi.org/10.1049/nbt2.12100 PubMed DOI

Bapat RA, Chaubal TV, Joshi CP et al (2018) An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C Mater Biol Appl 91:881–898. https://doi.org/10.1016/j.msec.2018.05.069 PubMed DOI

Barros J, Silva MG, Rodrigues MA et al (2014) Antibacterial, physicochemical and mechanical properties of endodontic sealers containing quaternary ammonium polyethylenimine nanoparticles. Int Endod J 47:725–734. https://doi.org/10.1111/iej.12207 PubMed DOI

Benatti ACB, Xavier MV, Macedo MF et al (2016) Comparative analysis of biocompatibility between poly (L-lactic Acid) (PLLA) and PLDL Purac® nanofibers for use in tissue engineering. Chem Eng Trans 49:199–204. https://doi.org/10.3303/CET1649034 DOI

Blommaerts N, Vanrompay H, Nuti S et al (2019) Unraveling Structural Information of Turkevich Synthesized Plasmonic Gold-Silver Bimetallic Nanoparticles. Small 15:e1902791. https://doi.org/10.1002/smll.201902791 PubMed DOI

Bouillaguet S, Wataha JC, Tay FR et al (2006) Initial in vitro biological response to contemporary endodontic sealers. J Endod 32:989–992. https://doi.org/10.1016/j.joen.2006.05.006 PubMed DOI

Cağavi F, Akalan N, Celik H et al (2004) Effect of hydrophilic coating on microorganism colonization in silicone tubing. Acta Neurochir (wien) 146:603–610. https://doi.org/10.1007/s00701-004-0262-z PubMed DOI

Carvajal SK, Alvarado M, Rodríguez YM et al (2021) Pathogenicity assessment of Colombian strains of Candida auris in the Galleria mellonella invertebrate model. J Fungi (Basel) 7:401. https://doi.org/10.3390/jof7060401 PubMed DOI

Cavassin ED, de Figueiredo LF, Otoch JP et al (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology 13:64. https://doi.org/10.1186/s12951-015-0120-6 PubMed DOI PMC

Chandra J, Kuhn DM, Mukherjee PK et al (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394. https://doi.org/10.1128/JB.183.18.5385-5394.2001 PubMed DOI PMC

Cheon JY, Kim SJ, Rhee YH et al (2019) Shape-dependent antimicrobial activities of silver nanoparticles. Int J Nanomedicine 14:2773–2780. https://doi.org/10.2147/IJN.S196472 PubMed DOI PMC

Choi YM, Yoon H, Lee S et al (2020) Isoflavones, anthocyanins, phenolic content, and antioxidant activities of black soybeans (Glycine max (L.) Merrill) as affected by seed weight. Sci Rep 10:19960. https://doi.org/10.1038/s41598-020-76985-4 PubMed DOI PMC

Ciriminna R, Albo Y, Pagliaro M (2020) New antivirals and antibacterials based on silver nanoparticles. Chem Med Chem 15:1619–1623. https://doi.org/10.1002/cmdc.202000390 PubMed DOI

Czerninski R, Pikovsky A, Gati I et al (2015) Comparison of the efficacy of a novel sustained release clotrimazole varnish and clotrimazole troches for the treatment of oral candidiasis. Clin Oral Investig 19:467–473. https://doi.org/10.1007/s00784-014-1259-5 PubMed DOI

da Silva WJ, Seneviratne J, Samaranayake LP et al (2010) Bioactivity and architecture of Candida albicans biofilms developed on poly(methyl methacrylate) resin surface. J Biomed Mater Res B Appl Biomater 94:149–156. https://doi.org/10.1002/jbm.b.31635 PubMed DOI

da Silva PM, Acosta EJ, Pinto Lde R et al (2011) Microscopical analysis of Candida albicans biofilms on heat-polymerised acrylic resin after chlorhexidine gluconate and sodium hypochlorite treatments. Mycoses 54:e712–e717. https://doi.org/10.1111/j.1439-0507.2010.02005.x PubMed DOI

de Andrade IM, Cruz PC, da Silva CH et al (2011) Effervescent tablets and ultrasonic devices against Candida and mutans streptococci in denture biofilm. Gerodontology 28:264–270. https://doi.org/10.1111/j.1741-2358.2010.00378.x PubMed DOI

de Andrade IM, Cruz PC, Silva-Lovato CH et al (2012) Effect of chlorhexidine on denture biofilm accumulation. J Prosthodont 21:2–6. https://doi.org/10.1111/j.1532-849X.2011.00774.x PubMed DOI

de Castro DT, Valente MLDC, Aires CP et al (2017) Elemental ion release and cytotoxicity of antimicrobial acrylic resins incorporated with nanomaterial. Gerodontology 34:320–325. https://doi.org/10.1111/ger.12267 PubMed DOI

De Matteis V, Cascione M, Toma CC et al (2019) Silver nanoparticles addition in poly(methyl methacrylate) dental matrix: topographic and antimycotic studies. Int J Mol Sci 20:4691. https://doi.org/10.3390/ijms20194691 . (Published 21 Sep 2019) PubMed DOI PMC

d’Enfert C, Kaune AK, Alaban LR et al (2021) The impact of the fungus-host-microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Ver 45:fuaa060. https://doi.org/10.1093/femsre/fuaa060 DOI

Desai AS, Singh A, Edis Z et al (2022) An in vitro and in vivo study of the efficacy and toxicity of plant-extract-derived silver nanoparticles. J Funct Biomater 13:54. https://doi.org/10.3390/jfb13020054 PubMed DOI PMC

Dong J, Carpinone PL, Pyrgiotakis G et al (2020) Synthesis of precision gold nanoparticles using Turkevich method. Kona 37:224–232. https://doi.org/10.14356/kona.2020011 PubMed DOI PMC

Dos Santos AG, Marquês JT, Carreira AC et al (2017) The molecular mechanism of Nystatin action is dependent on the membrane biophysical properties and lipid composition. Phys Chem Chem Phys 19:30078–30088. https://doi.org/10.1039/c7cp05353c PubMed DOI

Durán N, Durán M, de Jesus MB et al (2016) Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12:789–799. https://doi.org/10.1016/j.nano.2015.11.016 PubMed DOI

Emmanouil JK, Kavouras P, Kehagias T (2002) The effect of photo-activated glazes on the microhardness of acrylic baseplate resins. J Dent 30:7–10. https://doi.org/10.1016/s0300-5712(01)00052-5 PubMed DOI

Estivill D, Arias A, Torres-Lana A et al (2011) Biofilm formation by five species of Candida on three clinical materials. J Microbiol Methods 86:238–242. https://doi.org/10.1016/j.mimet.2011.05.019 PubMed DOI

European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) (2000) Determination of minimum inhibitory concentrations (MICs) of antimicrobial agents by agar dilution. Clin Microbial Infect 6:509–515. https://doi.org/10.1046/j.1469-0691.2000.00142.x DOI

Fernandes GL, Delbem ACB, do Amaral JG, et al (2018) Nanosynthesis of silver-calcium glycerophosphate: promising association against oral pathogens. Antibiotics (Basel) 7:52. https://doi.org/10.3390/antibiotics7030052 PubMed DOI

Fernandez CC, Sokolonski AR, Fonseca MS et al (2021) Applications of silver nanoparticles in dentistry: advances and technological innovation. Int J Mol Sci 22:2485. https://doi.org/10.3390/ijms22052485 PubMed DOI PMC

Flieger J, Franus W, Panek R et al (2021) Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules 26:4986. https://doi.org/10.3390/molecules26164986 PubMed DOI PMC

Gad MM, Abualsaud R, Rahoma A et al (2022) Double-layered acrylic resin denture base with nanoparticle additions: An in vitro study. J Prosthet Dent 127:174–183. https://doi.org/10.1016/j.prosdent.2020.08.021 PubMed DOI

Gad MM, Fouda SM (2020) Current perspectives and the future of Candida albicans-associated denture stomatitis treatment. Dent Med Probl 57:95–102. https://doi.org/10.17219/dmp/112861 PubMed DOI

Gendreau L, Loewy ZG (2011) Epidemiology and etiology of denture stomatitis. J Prosthodont 20:251–260. https://doi.org/10.1111/j.1532-849X.2011.00698.x PubMed DOI

Gorji RG, Shoorgashti R, Lotfali E et al (2023) MIC determination of silver nanoparticles on nystatin-resistant Candida albicans in patients with denture stomatitis: an in vitro study. Middle East J Rehab Health Stud 11:e138030. https://doi.org/10.5812/mejrh-138030 DOI

Hannah VE, O’Donnell L, Robertson D et al (2017) Denture stomatitis: causes, cures and prevention. Prim Dent J 6:46–51. https://doi.org/10.1308/205016817822230175 PubMed DOI

International Standard ISO 10993–5 (2009) Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity. Geneva: International Organization for Standardization.  https://www.iso.org/obp/ui/#iso:std:iso:10993:-5:ed-3:v1:en

Iqbal Z, Zafar MS (2016) Role of antifungal medicaments added to tissue conditioners: A systematic review. J Prosthodont Res 60:231–239. https://doi.org/10.1016/j.jpor.2016.03.006 PubMed DOI

Izumida FE, Moffa EB, Vergani CE et al (2014) In vitro evaluation of adherence of Candida albicans, Candida glabrata, and Streptococcus mutans to an acrylic resin modified by experimental coatings. Biofouling 30:525–533. https://doi.org/10.1080/08927014.2014.894028 PubMed DOI

Judan Cruz KG, Alfonso ED, Fernando SID et al (2021) Candida albicans biofilm Inhibition by ethnobotanicals and ethnobotanically-synthesized gold nanoparticles. Front Microbiol. https://doi.org/10.3389/fmicb.2021.665113 PubMed DOI PMC

Kalaimathi J, Sridevi B, Ananthi SN et al (2019) Glycine max seed mediated synthesis and characterization of zinc oxide nanoparticles and its antifungal activity against pathogenic fungal strains. Indian J Public Health Res Dev 10:3628. https://doi.org/10.5958/0976-5506.2019.04151.2 DOI

Kinoshita H, Yoshioka M, Ihara F et al (2016) Cryptic antifungal compounds active by synergism with polyene antibiotics. J Biosci Bioeng 121:394–398. https://doi.org/10.1016/j.jbiosc.2015.08.003 PubMed DOI

Köroğlu A, Şahin O, Dede DÖ et al (2016) Efficacy of denture cleaners on the surface roughness and Candida albicans adherence of sealant agent coupled denture base materials. Dent Mater J 35:810–816. https://doi.org/10.4012/dmj.2016-103 PubMed DOI

Kuhn DM, Balkis M, Chandra J et al (2003) Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 41:506–508. https://doi.org/10.1128/JCM.41.1.506-508.2003 PubMed DOI PMC

Lara HH, Romero-Urbina DG, Pierce C et al (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnology 13:91. https://doi.org/10.1186/s12951-015-0147-8 PubMed DOI PMC

Lee SH, Jun BH (2019) Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci 20:865. https://doi.org/10.3390/ijms20040865 PubMed DOI PMC

Lee SJ, Chung J, Na HS et al (2013) Characteristics of novel root-end filling material using epoxy resin and Portland cement. Clin Oral Investig 17:1009–1015. https://doi.org/10.1007/s00784-012-0782-5 PubMed DOI

Li Z, Sun J, Lan J et al (2016) Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation. Gerodontology 33:209–216. https://doi.org/10.1111/ger.12142 PubMed DOI

Liao C, Li Y, Tjong SC (2019) Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci 20:449. https://doi.org/10.3390/ijms20020449 PubMed DOI PMC

Liaqat I, Sabri AN (2008) Effect of biocides on biofilm bacteria from dental unit water lines. Curr Microbiol 56:619–624. https://doi.org/10.1007/s00284-008-9136-6 PubMed DOI

Maity K, Panda DK, Gallup RJ et al (2018) Cation-Assisted Reversible Folding and Anion Binding by a Naphthalenediimide-Based Ditopic Ion-Pair Receptor. Org Lett 20:962–965. https://doi.org/10.1021/acs.orglett.7b03861 PubMed DOI

Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. https://doi.org/10.1007/s11051-010-9900-y DOI

Mathé L, Van Dijck P (2013) Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 59:251–264. https://doi.org/10.1007/s00294-013-0400-3 PubMed DOI PMC

Mazzonello A, Vasilis VV, Farrugia C et al (2017) Synthesis and characterization of silver nanoparticles. Int J Eng Res 7:41-47. https://www.researchgate.net

Monsenego P (2000) Presence of microorganisms on the fitting denture complete surface: study 'in vivo’. J Oral Rehabil 27:708–713. https://doi.org/10.1046/j.1365-2842.2000.00564.x PubMed DOI

Mousavi SM, Hashemi SA, Ghasemi Y et al (2018) Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif Cells Nanomed Biotechnol 46:S855–S872. https://doi.org/10.1080/21691401.2018.1517769 PubMed DOI

Mousavi-Khattat M, Keyhanfar M, Razmjou A (2018) A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artif Cells Nanomed Biotechnol 46:S1022–S1031. https://doi.org/10.1080/21691401.2018.1527346 PubMed DOI

Mussin J, Robles-Botero V, Casañas-Pimentel R et al (2021) Antimicrobial and cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents. Sci Rep 11:14566. https://doi.org/10.1038/s41598-021-94012-y PubMed DOI PMC

Nevarez-Raconb A, Orrantia-Borunda E, González-Hernándes J et al (2014) Mechanical characterization of optical glass fiber coated with a thin film of silver nanoparticles by nanoindentation. Mat Letters 136:63–66. https://doi.org/10.1016/j.matlet.2014.08.005 DOI

Oliveira FA, Matos AA, Matsuda SS et al (2017) Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts. J Photochem Photobiol B 169:35–40. https://doi.org/10.1016/j.jphotobiol.2017.02.020 PubMed DOI

Onoue S, Yamada S, Chan HK (2014) Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 9:1025–1037. https://doi.org/10.2147/IJN.S38378 PubMed DOI PMC

Osonga FJ, Akgul A, Yazgan I et al (2020) Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: a model study as potential fungicides. Molecules (Basel, Switzerland) 25:2682. https://doi.org/10.3390/molecules25112682 PubMed DOI

Padilla-Camberos E, Juárez-Navarro KJ, Sanchez-Hernandez IM (2022) Toxicological evaluation of silver nanoparticles synthesized with peel extract of Stenocereus queretaroensis. Materials (Basel) 15:5700. https://doi.org/10.3390/ma15165700 PubMed DOI PMC

Park SE, Periathamby AR, Loza JC (2003) Effect of surface-charged poly(methyl methacrylate) on the adhesion of Candida albicans. J Prosthodont 12:249–254. https://doi.org/10.1016/s1059-941x(03)00107-4 PubMed DOI

Patil N, Bhaskar R, Vyavhare V et al (2021) Overview on methods of synthesis of nanoparticles. Int J Curr Pharm Res 13:11–16. https://doi.org/10.22159/ijcpr.2021v13i2.41556 DOI

Pellizzaro D, Polyzois G, Machado AL et al (2012) Effectiveness of mechanical brushing with different denture cleansing agents in reducing in vitro Candida albicans biofilm viability. Braz Dent J 23:547–554. https://doi.org/10.1590/s0103-64402012000500013 PubMed DOI

Peralta LCF, Almeida NLM, Pontes FML et al (2023) Silver nanoparticles in denture adhesive: An antimicrobial approach against Candida albicans. J Dent 131:104445. https://doi.org/10.1016/j.jdent.2023.104445 PubMed DOI

Perde-Schrepler M, Florea A, Brie I et al (2019) Size-dependent cytotoxicity and genotoxicity of silver nanoparticles in cochlear cells in vitro. J Nanomater 2019:12. https://doi.org/10.1155/2019/6090259 DOI

Pereira-Cenci T, Fernandes FS, Skupien JA et al (2013) Can new dentures decrease candida levels? Int J Prosthodont 26:470–477. https://doi.org/10.11607/ijp.3047 PubMed DOI

Petla KR, Vivekanandhan S, Misra M et al (2012) Soybean (glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 2012:14–19. https://doi.org/10.4236/jbnb.2012.31003 DOI

Piacenti-Silva M, Matos AA, Paulin JV et al (2016) Biocompatibility investigations of synthetic melanin and melanin analogue for application in bioelectronics. Polym Int 65:1347–1354. https://doi.org/10.1002/pi.5192 DOI

Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014:1–8. https://doi.org/10.1155/2014/963961 DOI

Pryshchepa O, Pomastowski P, Buszewski B (2020) Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 284:102246. https://doi.org/10.1016/j.cis.2020.10224 PubMed DOI

Rad MS, Kompany A, Zak AK et al (2013) Microleakage and antibacterial properties of ZnO and ZnO: Ag nanopowders prepared via a sol–gel method for endodontic sealer application. J Nanopart Res 15:1925–1926. https://doi.org/10.1007/s11051-013-1925-6 DOI

Raile PN, Oliveira VC, Macedo AP et al (2023) Action of chitosan-based solutions against a model four-species biofilm formed on cobalt-chromium and acrylic resin surfaces. Gerodontology 40:472–483. https://doi.org/10.1111/ger.12672 PubMed DOI

Raza A, Sime FB, Cabot PJ et al (2019) Solid nanoparticles for oral antimicrobial drug delivery: a review. Drug Discov Today 24:858–866. https://doi.org/10.1016/j.drudis.2019.01.004 PubMed DOI

Recordati C, De Maglie M, Cella C et al (2021) Repeated oral administration of low doses of silver in mice: tissue distribution and effects on central nervous system. Part Fibre Toxicol 18:23. https://doi.org/10.1186/s12989-021-00418-x PubMed DOI PMC

Ribeiro AI, Vieira B, Dantas D et al (2023) Synergistic antimicrobial activity of silver nanoparticles with an emergent class of azoimidazoles. Pharmaceutics 15:926. https://doi.org/10.3390/pharmaceutics15030926 PubMed DOI PMC

Rónavári A, Igaz N, Adamecz DI et al (2021) Green silver and gold nanoparticles: biological synthesis approaches and potentials for biomedical applications. Molecules 26:844. https://doi.org/10.3390/molecules26040844 PubMed DOI PMC

Sahin O, Koroglu A, Dede DÖ et al (2016) Effect of surface sealant agents on the surface roughness and color stability of denture base materials. J Prosthet Dent 116:610–616. https://doi.org/10.1016/j.prosdent.2016.03.007 PubMed DOI

San Millán R, Elguezabal N, Regúlez P et al (2000) Effect of salivary secretory IgA on the adhesion of Candida albicans to polystyrene. Microbiology (reading) 146:2105–2112. https://doi.org/10.1099/00221287-146-9-2105 PubMed DOI

Scheibler E, Garcia MCR, Medina da Silva R et al (2017) Use of nystatin and chlorhexidine in oral medicine: Properties, indications and pitfalls with focus on geriatric patients. Gerodontology 34:291–298. https://doi.org/10.1111/ger.12278 PubMed DOI

Schmutzler A, Rauch A, Nitschke I et al (2021) Cleaning of removable dental prostheses – a systematic review. J Evid Based Dent Pract 21:101644. https://doi.org/10.1016/j.jebdp.2021.101644 PubMed DOI

Sesma N, Laganá DC, Morimoto S et al (2005) Effect of denture surface glazing on denture plaque formation. Braz Dent J 16:129–134. https://doi.org/10.1590/s0103-64402005000200008 PubMed DOI

Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology 16:14. https://doi.org/10.1186/s12951-018-0334-5 PubMed DOI PMC

Silva S, Pires P, Monteiro DR et al (2013) The effect of silver nanoparticles and nystatin on mixed biofilms of Candida glabrata and Candida albicans on acrylic. Med Mycol 51:178–184. https://doi.org/10.3109/13693786.2012.700492 PubMed DOI

Skandalis N, Dimopoulou A, Georgopoulou A et al (2017) The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo, on their antibacterial efficacy. Nanomaterials (Basel, Switzerland) 7:178. https://doi.org/10.3390/nano7070178 PubMed DOI

Slavin YN, Asnis J, Häfeli UO et al (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 15:65. https://doi.org/10.1186/s12951-017-0308-z PubMed DOI PMC

Sóczó G, Kardos G, McNicholas PM et al (2007) Correlation of posaconazole minimum fungicidal concentration and time kill test against nine Candida species. J Antimicrob Chemother 60:1004–1009. https://doi.org/10.1093/jac/dkm350 PubMed DOI

Tang S, Zheng J (2018) Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. https://doi.org/10.1002/adhm.201701503 PubMed DOI PMC

Tareq M, Khadrawy YA, Rageh MM, l, (2022) Dose-dependent biological toxicity of green synthesized silver nanoparticles in rat’s brain. Sci Rep 12:22642. https://doi.org/10.1038/s41598-022-27171-1 PubMed DOI PMC

Taudorf EH, Jemec GBE, Hay RJ et al (2019) Cutaneous candidiasis - an evidence-based review of topical and systemic treatments to inform clinical practice. J Eur Acad Dermatol Venereol 33:1863–1873. https://doi.org/10.1111/jdv.15782 PubMed DOI

Tobudic S, Lassnigg A, Kratzer C et al (2010) Antifungal activity of amphotericin B, caspofungin and posaconazole on Candida albicans biofilms in intermediate and mature development phases. Mycoses 53:208–214. https://doi.org/10.1111/j.1439-0507.2009.01690.x PubMed DOI

Tournu H, Van Dijck P (2012) Candida biofilms and the host: models and new concepts for eradication. Int J Microbiol 2012:845352. https://doi.org/10.1155/2012/845352 PubMed DOI

Tsui C, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74:ftw018. https://doi.org/10.1093/femspd/ftw018 PubMed DOI PMC

Vasile OR, Andronescu E, Truşcă R et al (2019) Structure-grain size-synthesis route of silver nanoparticles: a correlation with the cytotoxic effect. Rom J Morphol Embryol = Revue roumaine de morphologie et embryologie 60:617–628 PubMed

Vila T, Sultan AS, Montelongo-Jauregui D et al (2020) Oral candidiasis: a disease of opportunity. J Fungi (Basel) 6:15. https://doi.org/10.3390/jof6010015 PubMed DOI

Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249. https://doi.org/10.2147/IJN.S121956 PubMed DOI PMC

Williams D, Lewis M (2011) Pathogenesis and treatment of oral candidosis. J Oral Microbiol 3. https://doi.org/10.3402/jom.v3i0.5771 PubMed DOI PMC

Wu YP, Yang Y, Zhang ZJ et al (2018) A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Adv Powder Technol 29:407–415. https://doi.org/10.1016/j.apt.2017.11.028 DOI

Wuithschick M, Birnbaum A, Witte S et al (2015) Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9:7052–7071. https://doi.org/10.1021/acsnano.5b01579 PubMed DOI

Xu LC, Siedlecki CA (2012) Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. Acta Biomater 8:72–81. https://doi.org/10.1016/j.actbio.2011.08.009 PubMed DOI

Xu L, Wang YY, Huang J et al (2020) Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 10:8996–9031. https://doi.org/10.7150/thno.45413 PubMed DOI PMC

Yamauchi M, Yamamoto K, Wakabayashi M et al (1990) In vitro adherence of microorganisms to denture base resin with different surface texture. Dent Mater J 9:19–24. https://doi.org/10.4012/dmj.9.19 PubMed DOI

Yin IX, Zhang J, Zhao IS et al (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 15:2555–2562. https://doi.org/10.2147/IJN.S246764 PubMed DOI PMC

Yodmongkol S, Chantarachindawong R, Thaweboon S et al (2014) The effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base material. J Prosthet Dent 112:1530–1538. https://doi.org/10.1016/j.prosdent.2014.06.019 PubMed DOI

Yoshijima Y, Murakami K, Kayama S et al (2010) Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses 53:221–226. https://doi.org/10.1111/j.1439-0507.2009.01694.x PubMed DOI

Zhang XF, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534. https://doi.org/10.3390/ijms17091534 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...