Effect of Counterions on the Soft Ionization Mass Spectra of Analytes with Multiple Permanent Charges
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38666630
PubMed Central
PMC11079854
DOI
10.1021/acs.analchem.3c05786
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Multiply permanently charged analytes (MPCAs) are of great interest for various applications. MPCA soft ionization mass spectra (MS) strongly depend on the counterions of MPCA. We have studied thoroughly this effect to expand the use of MS in MPCA characterization. To this end, β-cyclodextrin-based MPCAs with 7 (MIM7NBCD) and 14 (MIM14BCD) quaternary ammonium charges with a series of monovalent counterions were prepared and their MS were measured using two of the most popular soft ionization techniques, electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). MALDI MS of both analytes were well resolved, with signals assignable to the analytes only with the two least basic tested counterions (ClO4- and TfO-). Similarly, analyte-assignable signals were observed in ESI MS of MIM14BCD only with ClO4- and TfO-. The situation was opposite with ESI MS of MIM7NBCD where assignable signals were observed with Cl- but not with TfO-. Thus, to get high-quality MS, binding between the MPCA permanent charges and the counterions must be of the optimal effective strength, given also by the number of analyte permanent charges as shown by the simple combinatorial model of binding. Of practical interest is the observation that unsuitable counterions can be replaced in situ by an excess of corresponding acid. The findings form a coherent framework for interpreting and improving MPCA mass spectra.
Zobrazit více v PubMed
Mirza U. A.; Chalt B. T. Effects of Anions on the Positive Ion Electrospray Ionization Mass Spectra of Peptides and Proteins. Anal. Chem. 1994, 66 (18), 2898–2904. 10.1021/ac00090a017. PubMed DOI
Verkerk U. H.; Kebarle P. Ion-Ion and Ion–Molecule Reactions at the Surface of Proteins Produced by Nanospray. Information on the Number of Acidic Residues and Control of the Number of Ionized Acidic and Basic Residues. J. Am. Soc. Mass Spectrom. 2005, 16 (8), 1325–1341. 10.1016/j.jasms.2005.03.018. PubMed DOI
Krüger R.; Karas M. Formation and Fate of Ion Pairs during MALDI Analysis: Anion Adduct Generation as an Indicative Tool to Determine Ionization Processes. J. Am. Soc. Mass Spectrom. 2002, 13 (10), 1218–1226. 10.1016/S1044-0305(02)00450-6. PubMed DOI
Wang G.; Colecor R. B. Effects of Solvent and Counterion on Ion Pairing and Observed Charge States of Diquatemary Ammonium Salts in Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1996, 7 (10), 1050–1058. 10.1016/1044-0305(96)00051-7. PubMed DOI
Popr M.; Filippov S. K.; Matushkin N.; Dian J.; Jindřich J. Properties of Cationic Monosubstituted Tetraalkylammonium Cyclodextrin Derivatives – Their Stability, Complexation Ability in Solution or When Deposited on Solid Anionic Surface. Beilstein J. Org. Chem. 2015, 11, 192–199. 10.3762/bjoc.11.20. PubMed DOI PMC
Eftekhari A.; Saito T. Synthesis and Properties of Polymerized Ionic Liquids. Eur. Polym. J. 2017, 90, 245–272. 10.1016/j.eurpolymj.2017.03.033. DOI
Kasal P.Synthesis of Cyclodextrin Derivatives Suitable for Binding to Solid Supports. Doctoral Thesis, Charles University, Prague, 2022, https://dspace.cuni.cz/bitstream/handle/20.500.11956/177515/140104347.pdf.
Pasch H.; Schrepp W.. MALDI-ToF Mass Spectrometry of Synthetic Polymers; Springer Berlin Heidelberg: Berlin, Heidelberg, 2003.
Knochenmuss R.; Zenobi R. MALDI Ionization: The Role of In-Plume Processes. Chem. Rev. 2003, 103 (2), 441–452. 10.1021/cr0103773. PubMed DOI
Kebarle P.; Verkerk U. H.. On the Mechanism of Electrospray Ionization Mass Spectrometry (ESIMS). In Electrospray and MALDI Mass Spectrometry; Cole R. B., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp 1–48.
Kebarle P.; Verkerk U. H. Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrom. Rev. 2009, 28 (6), 898–917. 10.1002/mas.20247. PubMed DOI
Pearson R. G. Hard and Soft Acids and Bases, HSAB, Part 1: Fundamental Principles. J. Chem. Educ. 1968, 45 (9), 581.10.1021/ed045p581. DOI
Mazzini V.; Craig V. S. J. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents. Chem. Sci. 2017, 8 (10), 7052–7065. 10.1039/C7SC02691A. PubMed DOI PMC
Trummal A.; Lipping L.; Kaljurand I.; Koppel I. A.; Leito I. Acidity of Strong Acids in Water and Dimethyl Sulfoxide. J. Phys. Chem. A 2016, 120 (20), 3663–3669. 10.1021/acs.jpca.6b02253. PubMed DOI
Goldberg R. N.; Kishore N.; Lennen R. N. Thermodynamic Quantities for the Ionization Reactions of Buffers. J. Phys. Chem. Ref. Data 2002, 31 (2), 231–370. 10.1063/1.1416902. DOI
Afonso C.; Cole R. B.; Tabet J.-C.. Dissociation of Even-Electron Ions. In Electrospray and MALDI Mass Spectrometry; Cole R. B., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp 631–682.
Kurzer F.; Douraghi-Zadeh K. Advances in the Chemistry of Carbodiimides. Chem. Rev. 1967, 67 (2), 107–152. 10.1021/cr60246a001. PubMed DOI
Horský J. Semiflexible Oligomer–Polymer Binding: Combinatorial and Conditional Probability Analyses and Stochastic Simulation. Macromolecules 2008, 41 (13), 5014–5023. 10.1021/ma702493w. DOI
Dreisewerd K. The Desorption Process in MALDI. Chem. Rev. 2003, 103, 395–425. 10.1021/cr010375i. PubMed DOI
Srour H.; Rouault H.; Santini C. C.; Chauvin Y. Silver and Water Free Metathesis Reaction: A Route to Ionic Liquids. Green Chem. 2013, 15 (5), 1341.10.1039/c3gc37034h. DOI