How smart was T. rex? Testing claims of exceptional cognition in dinosaurs and the application of neuron count estimates in palaeontological research

. 2024 Dec ; 307 (12) : 3685-3716. [epub] 20240426

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38668805

Recent years have seen increasing scientific interest in whether neuron counts can act as correlates of diverse biological phenomena. Lately, Herculano-Houzel (2023) argued that fossil endocasts and comparative neurological data from extant sauropsids allow to reconstruct telencephalic neuron counts in Mesozoic dinosaurs and pterosaurs, which might act as proxies for behaviors and life history traits in these animals. According to this analysis, large theropods such as Tyrannosaurus rex were long-lived, exceptionally intelligent animals equipped with "macaque- or baboon-like cognition", whereas sauropods and most ornithischian dinosaurs would have displayed significantly smaller brains and an ectothermic physiology. Besides challenging established views on Mesozoic dinosaur biology, these claims raise questions on whether neuron count estimates could benefit research on fossil animals in general. Here, we address these findings by revisiting Herculano-Houzel's (2023) work, identifying several crucial shortcomings regarding analysis and interpretation. We present revised estimates of encephalization and telencephalic neuron counts in dinosaurs, which we derive from phylogenetically informed modeling and an amended dataset of endocranial measurements. For large-bodied theropods in particular, we recover significantly lower neuron counts than previously proposed. Furthermore, we review the suitability of neurological variables such as neuron numbers and relative brain size to predict cognitive complexity, metabolic rate and life history traits in dinosaurs, coming to the conclusion that they are flawed proxies for these biological phenomena. Instead of relying on such neurological estimates when reconstructing Mesozoic dinosaur biology, we argue that integrative studies are needed to approach this complex subject.

Zobrazit více v PubMed

Alcock, J. (1972). The evolution of the use of tools by feeding animals. Evolution, 26(3), 464–473.

Alonso, P. D., Milner, A. C., Ketcham, R. A., Cookson, M. J., & Rowe, T. B. (2004). The avian nature of the brain and inner ear of Archaeopteryx. Nature, 430(7000), 666–669.

Aureliano, T., Ghilardi, A. M., Müller, R. T., Kerber, L., Pretto, F. A., Fernandes, M. A., Ricardi‐Branco, F., & Wedel, M. J. (2022). The absence of an invasive air sac system in the earliest dinosaurs suggests multiple origins of vertebral pneumaticity. Scientific Reports, 12(1).

Balanoff, A., Ferrer, E., Saleh, L., Gignac, P. M., Gold, M. E. L., Marugán‐Lobón, J., & Vaska, P. (2024). Quantitative functional imaging of the pigeon brain: Implications for the evolution of avian powered flight. Proceedings of the Royal Society B, 291(2015), 20232172.

Balanoff, A. M., Bever, G. S., Rowe, T. B., & Norell, M. A. (2013). Evolutionary origins of the avian brain. Nature, 501(7465), 93–96.

Balanoff, A. M., Bever, G. S., & Ikejiri, T. (2010). The braincase of Apatosaurus (Dinosauria: Sauropoda) based on computed tomography of a new specimen with comments on variation and evolution in sauropod neuroanatomy. American Museum Novitates, 2010(3677), 1–32.

Baron, M. G., Norman, D. B., & Barrett, P. M. (2017). A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature, 543, 501–506.

Barrick, R. E., Showers, W. J., & Fischer, A. G. (1996). Comparison of thermoregulation of four ornithischian dinosaurs and a varanid lizard from the cretaceous two medicine formation: Evidence from oxygen isotopes. PALAIOS, 11, 295–305.

Barron, A. B., & Mourmourakis, F. (2023). The relationship between cognition and brain size or neuron number. Brain, Behavior and Evolution, 1. https://doi.org/10.1159/000532013

Bennett, S. C. (1995). A statistical study of Rhamphorhynchus from the Solnhofen limestone of Germany: Year‐classes of a single large species. Journal of Paleontology, 69(3), 569–580.

Benson, R. B., Campione, N. E., Carrano, M. T., Mannion, P. D., Sullivan, C., Upchurch, P., & Evans, D. C. (2014). Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biology, 12(5), e1001853.

Benson, R. B., Hunt, G., Carrano, M. T., & Campione, N. (2018). Cope's rule and the adaptive landscape of dinosaur body size evolution. Palaeontology, 61(1), 13–48.

Benson, R. B. J., Hunt, G., Carrano, M. T., & Campione, N. (2017). Data from: Cope's rule and the adaptive landscape of dinosaur body size evolution. Dryad Digital Repository. https://doi.org/10.5061/dryad.1t3r4

Benton, M. J. (2021). The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Research, 100, 261–289.

Benton, M. J., Dhouailly, D., Jiang, B., & McNamara, M. (2019). The early origin of feathers. Trends in Ecology and Evolution., 34(9), 856–869.

Bertrand, O. C., Shelley, S. L., Williamson, T. E., Wible, J. R., Chester, S. G., Flynn, J. J., & Brusatte, S. L. (2022). Brawn before brains in placental mammals after the end‐Cretaceous extinction. Science, 376(6588), 80–85.

Bever, G. S., Brusatte, S. L., Carr, T. D., Xu, X., Balanoff, A. M., & Norell, M. A. (2013). The braincase anatomy of the late cretaceous dinosaur Alioramus (Theropoda: Tyrannosauroidea). Bulletin of the American Museum of Natural History, 2013(376), 1–72.

Botha, J., Weiss, B. M., Dollman, K., Barrett, P. M., Benson, R. B., & Choiniere, J. N. (2023). Origins of slow growth on the crocodilian stem lineage. Current Biology, 33(19), 4261–4268.

Briscoe, S. D., Albertin, C. B., Rowell, J. J., & Ragsdale, C. W. (2018). Neocortical association cell types in the forebrain of birds and alligators. Current Biology, 28(5), 686–696.

Briscoe, S. D., & Ragsdale, C. W. (2018). Homology, neocortex, and the evolution of developmental mechanisms. Science, 362(6411), 190–193.

Brown, B., & Schlaikjer, E. M. (1940). The structure and relationships of Protoceratops. Annals of the New York Academy of Sciences, 40(3), 133–265.

Brown, C. M., Currie, P. J., & Therrien, F. (2021). Intraspecific facial bite marks in tyrannosaurids provide insight into sexual maturity and evolution of bird‐like intersexual display. Paleobiology, 48(1), 12–43.

Brusatte, S. L., Carr, T. D., Erickson, G. M., Bever, G. S., & Norell, M. A. (2009). A long‐snouted, multihorned tyrannosaurid from the late cretaceous of Mongolia. Proceedings of the National Academy of Sciences, 106(41), 17261–17266.

Buchholtz, E. A., & Seyfarth, E.‐A. (2001). The study of “fossil brains”: Tilly Edinger (1897–1967) and the beginnings of paleoneurology. Bioscience, 51(8), 674–682.

Burnham, D. A. (2004). New information on Bambiraptor feinbergi (Theropoda: Dromaeosauridae) from the Late Cretaceous of Montana. In P. J. Currie, E. B. Koppelhus, M. A. Shugar, & J. L. Wright (Eds.), Feathered dragons: Studies on the transition from dinosaurs to birds (pp. 67–111). Indiana University Press.

Butler, R. J., Barrett, P. M., & Gower, D. J. (2009). Postcranial skeletal pneumaticity and air‐sacs in the earliest pterosaurs. Biology Letters, 5(4), 557–560.

Button, D. J., & Zanno, L. E. (2023). Neuroanatomy of the late cretaceous Thescelosaurus neglectus (Neornithischia: Thescelosauridae) reveals novel ecological specialisations within Dinosauria. Scientific Reports, 13(1), 19224.

Caicoya, Á. L., Amici, F., Ensenyat, C., & Colell, M. (2019). Object permanence in Giraffa camelopardalis: First steps in giraffes' physical cognition. Journal of Comparative Psychology, 133(2), 207–214.

Campione, N. E. (2020). MASSTIMATE: Body mass estimation equations for vertebrates. Available at: https://cran.r-project.org/web/packages/MASSTIMATE/MASSTIMATE.pdf

Campione, N. E., Barrett, P. M., & Evans, D. C. (2020). On the ancestry of feathers in Mesozoic dinosaurs. In C. Foth & O. W. M. Rauhut (Eds.), The evolution of feathers: From their origin to the present (pp. 213–243). Springer International Publishing.

Campione, N. E., & Evans, D. C. (2020). The accuracy and precision of body mass estimation in non‐avian dinosaurs. Biological Reviews, 95(6), 1759–1797.

Carpenter, K., Sanders, F., McWhinney, L. A., & Wood, L. (2005). Evidence for predator‐prey relationships: Examples for Allosaurus and Stegosaurus. In K. Carpenter (Ed.), The carnivorous dinosaurs (pp. 325–350). Indiana University Press.

Carr, T. D. (2020). A high‐resolution growth series of Tyrannosaurus rex obtained from multiple lines of evidence. PeerJ, 8, e9192.

Cerroni, M. A., & Paulina‐Carabajal, A. (2019). Novel information on the endocranial morphology of the abelisaurid theropod Carnotaurus sastrei. Comptes Rendus Palevol, 18(8), 985–995.

Chentanez, T., Huggins, S. E., & Chentanez, V. (1983). Allometric relationships for the Siamese crocodile, Crocodylus siamensis. Journal of the Science Society of Thailand, 9, 5–26.

Chittka, L., & Niven, J. (2009). Are bigger brains better? Current Biology, 19(21), R995–R1008.

Colbourne, J. A. D., Auersperg, A. M. I., Lambert, M. L., Huber, L., & Völter, C. J. (2021). Extending the reach of tooling theory: A neurocognitive and phylogenetic perspective. Topics in Cognitive Science, 13(4), 548–572.

Cullen, T. M., Canale, J. I., Apesteguía, S., Smith, N. D., Hu, D., & Makovicky, P. J. (2020). Osteohistological analyses reveal diverse strategies of theropod dinosaur body‐size evolution. Proceedings of the Royal Society B, 287(1939), 20202258.

Curry Rogers, K., Martínez, R. N., Colombi, C., Rogers, R. R., & Alcober, O. (2024). Osteohistological insight into the growth dynamics of early dinosaurs and their contemporaries. PLOS ONE, 19(4), e0298242.

Cuvier, G. (1812). Recherches sur les ossemens fossiles de quadrupèdes (Vol. 3). Deterville.

D'Emic, M. D., O'Connor, P. M., Sombathy, R. S., Cerda, I., Pascucci, T. R., Varricchio, D., & Curry Rogers, K. A. (2023). Developmental strategies underlying gigantism and miniaturization in non‐avialan theropod dinosaurs. Science, 379(6634), 811–814.

Dawson, R. R., Field, D. J., Hull, P. M., Zelenitsky, D. K., Therrien, F., & Affek, H. P. (2020). Eggshell geochemistry reveals ancestral metabolic thermoregulation in Dinosauria. Science Advances, 6(7), eaax9361.

de Ricqlès, A., Padian, K., Horner, J. R., & Francillon‐Vieillot, H. (2000). Palaeohistology of the bones of pterosaurs (Reptilia: Archosauria): Anatomy, ontogeny, and biomechanical implications. Zoological Journal of the Linnean Society, 129, 349–385.

de Sousa, A. A., Beaudet, A., Calvey, T., Bardo, A., Benoit, J., Charvet, C. J., & Wei, Y. (2023). From fossils to mind. Communications Biology, 6(1), 636.

Deaner, R. O., Isler, K., Burkart, J., & Van Schaik, C. (2007). Overall brain size, and not encephalization quotient, best predicts cognitive ability across non‐human primates. Brain, Behavior and Evolution, 70(2), 115–124.

Diaz‐Uriarte, R., & Garland, T. (1998). Effects of branch length errors on the performance of phylogenetically independent contrasts. Systematic Biology, 47, 654–672.

Druckenmiller, P. S., Erickson, G. M., Brinkman, D., Brown, C. M., & Eberle, J. J. (2021). Nesting at extreme polar latitudes by non‐avian dinosaurs. Current Biology, 31(16), 3469–3478.

Edinger, T. (1929). Die fossilen Gehirne. J. Springer.

Erickson, G. M., Rauhut, O. W. M., Zhou, Z., Turner, A. H., Inouye, B. D., Hu, D., & Norell, M. A. (2009). Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS One, 4(10), e7390.

Estienne, P., Simion, M., Hagio, H., Yamamoto, N., Jenett, A., & Yamamoto, K. (2024). Different ways of evolving tool‐using brains in teleosts and amniotes. Communications Biology, 7(1), 88.

Evans, D. C. (2005). New evidence on brain−endocranial cavity relationships in ornithischian dinosaurs. Acta Palaeontologica Polonica, 50(3), 617–622.

Evans, D. C., Ridgely, R., & Witmer, L. M. (2009). Endocranial anatomy of lambeosaurine hadrosaurids (Dinosauria: Ornithischia): A sensorineural perspective on cranial crest function. The Anatomical Record, 292(9), 1315–1337.

Eyal, G., Verhoog, M. B., Testa‐Silva, G., Deitcher, Y., Lodder, J. C., Benavides‐Piccione, R., … Segev, I. (2016). Unique membrane properties and enhanced signal processing in human neocortical neurons. eLife, 5, e16553.

Fabbri, M., & Bhullar, B. A. S. (2022). The endocast of Euparkeria sheds light on the ancestral archosaur nervous system. Palaeontology, 65(6), e12630.

Fichtel, C., Dinter, K., & Kappeler, P. M. (2020). The lemur baseline: how lemurs compare to monkeys and apes in the Primate Cognition Test Battery. PeerJ, 8, e10025.

Fields, R. D., & Stevens‐Graham, B. (2002). New insights into neuron‐glia communication. Science, 298(5593), 556–562.

Font, E., Burghardt, G. M., & Leal, M. (2023). Brains, behaviour, and cognition: Multiple misconceptions. In C. Warwick, P. C. Arena, & G. M. Burghardt (Eds.), Health and welfare of captive reptiles (pp. 211–238). Springer International Publishing.

Font, E., García‐Roa, R., Pincheira‐Donoso, D., & Carazo, P. (2019). Rethinking the effects of body size on the study of brain size evolution. Brain Behavior and Evolution, 93(4), 182–195.

Fragaszy, D. M., & Mangalam, M. (2018). Tooling. Advances in the Study of Behavior, 2018(50), 177–241.

Franzosa, J., & Rowe, T. (2005). Cranial endocast of the cretaceous theropod dinosaur Acrocanthosaurus atokensis. Journal of Vertebrate Paleontology, 25(4), 859–864.

Güntürkün, O. (2014). Is dolphin cognition special? Brain, Behavior and Evolution, 83(3), 177–180.

Güntürkün, O., Ströckens, F., Scarf, D., & Colombo, M. (2017). Apes, feathered apes, and pigeons: Differences and similarities. Current Opinion in Behavioral Sciences, 16, 35–40.

Galton, P. M. (1988). Skull bones and endocranial casts of stegosaurian dinosaur Kentrosaurus Hennig, 1915 from Upper Jurassic of Tanzania, East Africa. Geologica et Paleontologica, 22, 123–143.

Galton, P. M. (2001). Endocranial casts of the plated dinosaur Stegosaurus (upper Jurassic, Western USA): A complete undistorted cast and the original specimens of Othniel Charles Marsh. In K. Carpenter (Ed.), The armored dinosaurs (pp. 103–129). Indiana University Press.

Garland, T., Jr., & Ives, A. R. (2000). Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. The American Naturalist, 155(3), 346–364.

Gatesy, S. M. (1991). Hind limb scaling in birds and other theropods: Implications for terrestrial locomotion. Journal of Morphology, 209(1), 83–96.

Giffin, E. B. (1989). Pachycephalosaur paleoneurology (Archosauria: Ornithischia). Journal of Vertebrate Paleontology, 9(1), 67–77.

Gignac, P. M., & Erickson, G. M. (2017). The biomechanics behind extreme osteophagy in Tyrannosaurus rex. Scientific Reports, 7(1), 2012.

Godfrey, R. K., Swartzlander, M., & Gronenberg, W. (2021). Allometric analysis of brain cell number in hymenoptera suggests ant brains diverge from general trends. Proceedings of the Royal Society B, 288(1947), 20210199.

Grigg, G., Nowack, J., Bicudo, J. E. P. W., Bal, N. C., Woodward, H. N., & Seymour, R. S. (2022). Whole‐body endothermy: Ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biological Reviews, 97(2), 766–801.

Gutiérrez‐Ibáñez, C., Iwaniuk, A. N., & Wylie, D. R. (2018). Parrots have evolved a primate‐like telencephalic‐midbrain‐cerebellar circuit. Scientific Reports, 8(1), 1–11.

Gutiérrez‐Ibáñez, C., Kettler, L., Pilon, M. C., Carr, C. E., & Wylie, D. R. (2023). Cerebellar inputs in the American alligator (Alligator mississippiensis). Brain Behavior and Evolution, 98(1), 44–60.

Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., & Yuri, T. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320(5884), 1763–1768.

Hansell, M., & Ruxton, G. (2008). Setting tool use within the context of animal construction behaviour. Trends in Ecology & Evolution, 23(2), 73–78.

Henderson, D. M. (2023). Growth constraints set an upper limit to theropod dinosaur body size. The Science of Nature, 110(1), 4.

Herculano‐Houzel, S. (2011). Brains matter, bodies maybe not: The case for examining neuron numbers irrespective of body size. Annals of the new York Academy of Sciences, 1225(1), 191–199.

Herculano‐Houzel, S. (2017). Numbers of neurons as biological correlates of cognitive capability. Current Opinion in Behavioral Sciences, 16(2017), 1–7.

Herculano‐Houzel, S. (2019). Longevity and sexual maturity vary across species with number of cortical neurons, and humans are no exception. Journal of Comparative Neurology, 527(10), 1689–1705.

Herculano‐Houzel, S. (2023). Theropod dinosaurs had primate‐like numbers of telencephalic neurons. Journal of Comparative Neurology, 531(9), 962–974.

Herculano‐Houzel, S., Catania, K., Manger, P. R., & Kaas, J. H. (2015). Mammalian brains are made of these: A dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain, Behavior and Evolution, 86(3–4), 145–163.

Herculano‐Houzel, S., Manger, P. R., & Kaas, J. H. (2014). Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Frontiers in Neuroanatomy, 8, 77.

Herculano‐Houzel, S., Ribeiro, P., Campos, L., Valotta da Silva, A., Torres, L. B., Catania, K. C., & Kaas, J. H. (2011). Updated neuronal scaling rules for the brains of glires (rodents/lagomorphs). Brain, Behavior and Evolution, 78(4), 302–314.

Herculano‐Houzel, S., & Kaas, J. H. (2011). Gorilla and orangutan brains conform to the primate cellular scaling rules: Implications for human evolution. Brain, Behavior and Evolution, 77(1), 33–44.

Holtz, T. R. (1996). Phylogenetic taxonomy of the Coelurosauria (Dinosauria: Theropoda). Journal of Palaeontology, 70(3), 536–538.

Hopson, J. A. (1979). Paleoneurology. In C. Gans, R. G. Northcutt, & P. Ulinski (Eds.), Biology of the Reptilia (Vol. 9, pp. 39–146). Academic Press.

Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., & Scheibe, S. (2015). Package “multcomp”. Available at: https://cran.r-project.org/web/packages/multcomp/multcomp.pdf

Hu, K., King, J. L., Romick, C. A., Dufeau, D. L., Witmer, L. M., Stubbs, T. L., … Benton, M. J. (2021). Ontogenetic endocranial shape change in alligators and ostriches and implications for the development of the non‐avian dinosaur endocranium. The Anatomical Record, 304(8), 1759–1775.

Hurlburt, G. R. (1996). Relative brain size in recent and fossil amniotes: Determination and interpretation. PhD thesis, (p. 250). University of Toronto.

Hurlburt, G. R., Ridgely, R. C., & Witmer, L. M. (2013). Relative size of brain and cerebrum in tyrannosaurid dinosaurs: An analysis using brain‐endocast quantitative relationships in extant alligators. In J. M. Parrish, R. E. Molnar, P. J. Currie, & E. B. Koppelhus (Eds.), Tyrannosaurid Paleobiology (pp. 134–154). Indiana University Press.

Hurlburt, G. R., & Waldorf, L. (2002). Endocast volume and brain mass in a size series of alligators. Journal of Vertebrate Paleontology, 23(Supplement to 3), 69A.

Iwaniuk, A. N., & Nelson, J. E. (2002). Can endocranial volume be used as an estimate of brain size in birds? Canadian Journal of Zoology, 80(1), 16–23.

Iwaniuk, A. N., & Wylie, D. R. (2020). Sensory systems in birds: What we have learned from studying sensory specialists. Journal of Comparative Neurology, 528(17), 2902–2918.

Janensch, W. (1935‐1936). Die Schädel der Sauropoden Brachiosaurus, Barosaurus und Dicraeosaurus aus den Tendaguru‐Schichten Deutsch‐Ostafrikas. Palaeontographica Supplementband 7 (Reihe 1, Teil 2), 145–298.

Jenkins, F. A., Jr., Shubin, N. H., Gatesy, S. M., & Padian, K. E. V. I. N. (2001). A diminutive pterosaur (Pterosauria: Eudimorphodontidae) from the Greenlandic Triassic. Bulletin of the Museum of Comparative Zoology, 156(1), 151–170.

Jensen, T. R., Zeiträg, C., & Osvath, M. (2023). The selfish preen: Absence of allopreening in Palaeognathae and its socio‐cognitive implications. Animal Cognition, 26, 1467–1476.

Jerison, H. J. (1973). Evolution of the brain and intelligence. Academic Press.

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444–448.

Jirak, D., & Janacek, J. (2017). Volume of the crocodilian brain and endocast during ontogeny. PLoS One, 12(6), e0178491.

Kabadayi, C., Krasheninnikova, A., O'Neill, L., van de Weijer, J., Osvath, M., & von Bayern, A. M. (2017). Are parrots poor at motor self‐regulation or is the cylinder task poor at measuring it? Animal Cognition, 20, 1137–1146.

Kabadayi, C., Taylor, L. A., von Bayern, A. M., & Osvath, M. (2016). Ravens, new Caledonian crows and jackdaws parallel great apes in motor self‐regulation despite smaller brains. Royal Society Open Science, 3(4), 160104.

Knoll, F., Buffetaut, E., & Buelow, M. (1999). A theropod braincase from the Jurassic of the Vaches Noires cliffs (Normandy, France); osteology and palaeoneurology. Bulletin de la Société géologique de France, 170(1), 103–109.

Knoll, F., Ishikawa, A., & Kawabe, S. (2024). A proxy for brain‐to‐endocranial cavity index in non‐neornithean dinosaurs and other extinct archosaurs. Journal of Comparative Neurology, 532(3).

Knoll, F., Lautenschlager, S., Kawabe, S., Martínez, G., Espílez, E., Mampel, L., & Alcalá, L. (2021). Palaeoneurology of the early cretaceous iguanodont Proa valdearinnoensis and its bearing on the parallel developments of cognitive abilities in theropod and ornithopod dinosaurs. Journal of Comparative Neurology, 529(18), 3922–3945.

Knoll, F., & Schwarz‐Wings, D. (2009). Palaeoneuroanatomy of Brachiosaurus. Annales de Paléontologie, 95(3), 165–175.

Ksepka, D. T., Balanoff, A. M., Smith, N. A., Bever, G. S., Bhullar, B. A. S., Bourdon, E., … Smaers, J. B. (2020). Tempo and pattern of avian brain size evolution. Current Biology, 30(11), 2026–2036.

Kumar, S., Stecher, G., Suleski, M., & Hedges, S. B. (2017). TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34(7), 1812–1819.

Kverková, K., Marhounová, L., Polonyiová, A., Kocourek, M., Zhang, Y., Olkowicz, S., … Němec, P. (2022). The evolution of brain neuron numbers in amniotes. Proceedings of the National Academy of Sciences, 119(11), e2121624119.

Larsson, H. C., Sereno, P. C., & Wilson, J. A. (2000). Forebrain enlargement among nonavian theropod dinosaurs. Journal of Vertebrate Paleontology, 20(3), 615–618.

Lauters, P., Coudyzer, W., Vercauteren, M., & Godefroit, P. (2012). The brain of iguanodon and Mantellisaurus: Perspectives on ornithopod evolution. In P. Godefroit (Ed.), Bernissart dinosaurs and early cretaceous terrestrial ecosystems (pp. 213–224). Indiana University Press.

Lefebvre, L., Nicolakakis, N., & Boire, D. (2002). Tools and brains in birds. Behaviour, 139(7), 939–973.

Legendre, L. J., Guénard, G., Botha‐Brink, J., & Cubo, J. (2016). Palaeohistological evidence for ancestral high metabolic rate in archosaurs. Systematic Biology, 65(6), 989–996.

Legendre, L. J., & Davesne, D. (2020). The evolution of mechanisms involved in vertebrate endothermy. Philosophical Transactions of the Royal Society B, 375(1793), 20190136.

Lockley, M. G., McCrea, R. T., Buckley, L. G., Lim, J. D., Matthews, N. A., Breithaupt, B. H., Houck, K. J., Gierliński, G. D., Surmik, D., Kim, K. S., Xing, L., Kong, D. Y., Cart, K., Martin, J., & Hadden, G. (2016). Theropod courtship: Large scale physical evidence of display arenas and avian‐like scrape ceremony behaviour by Cretaceous dinosaurs. Scientific Reports, 6, 18952.

Logan, C. J., Avin, S., Boogert, N., Buskell, A., Cross, F. R., Currie, A., … Montgomery, S. H. (2018). Beyond brain size: Uncovering the neural correlates of behavioral and cognitive specialization. Comparative Cognition & Behavior Reviews., 13, 55–89.

Lull, R. S. & Wright, N. E. (1942). Hadrosaurian Dinosaurs of North America. Geological Society of America, Boulder, Colorado.

Müller, R. T., Ferreira, J. D., Pretto, F. A., Bronzati, M., & Kerber, L. (2021). The endocranial anatomy of Buriolestes schultzi (Dinosauria: Saurischia) and the early evolution of brain tissues in sauropodomorph dinosaurs. Journal of Anatomy, 238(4), 809–827.

Maddison, W. P., & Maddison, D. R. (2023). Mesquite: a modular system for evolutionary analysis. Available at: http://www.mesquiteproject.org

Manger, P. R. (2013). Questioning the interpretations of behavioral observations of cetaceans: Is there really support for a special intellectual status for this mammalian order? Neuroscience, 250, 664–696.

Marsh, O. C. (1879). History and methods of palaeontological discovery. American Journal of Science, 3(107), 323–359.

Martins, E. P., & Housworth, E. A. (2002). Phylogeny shape and the phylogenetic comparative method. Systematic Biology, 51(6), 873–880.

Medina, L., & Reiner, A. (2000). Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends in Neurosciences, 23(1), 1–12.

Morhardt, A. C. (2016). Gross anatomical brain region approximation (GABRA): Assessing brain size, structure, and evolution in extinct archosaurs. PhD thesis. Ohio University.

Nesbitt, S. J. (2011). The early evolution of archosaurs: Relationships and the origin of major clades. Bulletin of the American Museum of Natural History, 2011(352), 1–292.

Ngwenya, A., Patzke, N., Manger, P. R., & Herculano‐Houzel, S. (2016). Continued growth of the central nervous system without mandatory addition of neurons in the Nile crocodile (Crocodylus niloticus). Brain Behavior and Evolution, 87(1), 19–38.

Ngwenya, A., Patzke, N., Spocter, M. A., Kruger, J. L., Dell, L. A., Chawana, R., … Manger, P. R. (2013). The continuously growing central nervous system of the Nile crocodile (Crocodylus niloticus). The Anatomical Record, 296(10), 1489–1500.

O'Hara, M., Mioduszewska, B., Mundry, R., Yohanna Haryoko, T., Rachmatika, R., Prawiradilaga, D. M., Huber, L., & Auersperg, A. M. I. (2021). Wild Goffin's cockatoos flexibly manufacture and use tool sets. Current Biology, 31(20), 4512–4520.e6.

Olkowicz, S., Kocourek, M., Lučan, R. K., Porteš, M., Fitch, W. T., Herculano‐Houzel, S., & Němec, P. (2016). Birds have primate‐like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences, 113(26), 7255–7260.

Osborn, H. F. (1912). Crania of Tyrannosaurus and Allosaurus. In Memoirs of the American Museum of Natural History, (vol. 1, pp. 1–30). American Museum of Natural History.

Osmólska, H. (2004). Evidence on relation of brain to endocranial cavity in oviraptorid dinosaurs. Acta Palaeontologica Polonica, 49(2), 321–324.

Padian, K., Horner, J. R., & De Ricqlès, A. (2004). Growth in small dinosaurs and pterosaurs: The evolution of the archosaurian growth strategies. Journal of Vertebrate Paleontology, 24(3), 555–571.

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884.

Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526–528.

Parker, S. T. (2015). Re‐evaluating the extractive foraging hypothesis. New Ideas in Psychology, 37, 1–12.

Parker, S. T., & Gibson, K. R. (1977). Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes. Journal of Human Evolution, 6(7), 623–641.

Paulina Carabajal, A., Carballido, J. L., & Currie, P. J. (2014). Braincase, neuroanatomy, and neck posture of Amargasaurus cazaui (Sauropoda, Dicraeosauridae) and its implications for understanding head posture in sauropods. Journal of Vertebrate Paleontology, 34(4), 870–882.

Paulina‐Carabajal, A., Bronzati, M., & Cruzado‐Caballero, P. (2023). Paleoneurology of non‐avian dinosaurs: An overview. In M. T. Dozo, A. Paulina‐Carabajal, T. E. Macrini, & S. Walsh (Eds.), Paleoneurology of amniotes: New directions in the study of fossil Endocasts (pp. 267–332). Springer International Publishing.

Paulina‐Carabajal, A., & Canale, J. I. (2010). Cranial endocast of the carcharodontosaurid theropod Giganotosaurus carolinii Coria & Salgado, 1995. Neues Jahrbuch Fur Geologie Und Palaontologie, 258, 249–256.

Paulina‐Carabajal, A., & Currie, P. J. (2012). New information on the braincase and endocast of Sinraptor dongi (Theropoda: Allosauroidea): Ethmoidal region, endocranial anatomy and pneumaticity. Vertebrata PalAsiatica, 50, 85–101.

Persons, W. S., IV, Currie, P. J., & Erickson, G. M. (2020). An older and exceptionally large adult specimen of Tyrannosaurus rex. The Anatomical Record, 303(4), 656–672.

Picasso, M. B., Tambussi, C. P., & Degrange, F. J. (2011). Virtual reconstructions of the endocranial cavity of Rhea americana (Aves, Palaeognathae): Postnatal anatomical changes. Brain Behavior and Evolution, 76(3–4), 176–184.

Picasso, M. B. J. (2012). Postnatal ontogeny of the locomotor skeleton of a cursorial bird: Greater rhea. Journal of Zoology, 286(4), 303–311.

Pika, S., Sima, M. J., Blum, C. R., Herrmann, E., & Mundry, R. (2020). Ravens parallel great apes in physical and social cognitive skills. Scientific Reports, 10(1), 1–19.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., & Van Willigen, B. (2017). Package "nlme". Available at: https://cran.r-project.org/web/packages/nlme/nlme.pdf.

Pontzer, H., Allen, V., & Hutchinson, J. R. (2009). Biomechanics of running indicates endothermy in bidepal dinosaurs. PLoS One, 4(12), 7783.

Prondvai, E., Stein, K., Ősi, A., & Sander, P. M. (2012). Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies. PLoS One, 7(2), e31392.

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available at: https://www.R-project.org/.

Redelstroff, R., Hübner, T. R., Chinsamy, A., & Sander, P. M. (2013). Bone histology of the stegosaur Kentrosaurus aethiopicus (Ornithischia: Thyreophora) from the upper Jurassic of Tanzania. Evolutionary Biology, 296(6), 933–952.

Redelstroff, R., & Sander, P. M. (2009). Long and girdle bone histology of Stegosaurus: Implications for growth and life history. Journal of Vertebrate Paleontology, 29(4), 1087–1099.

Reiner, A. (2023). Could theropod dinosaurs have evolved to a human level of intelligence? Journal of Comparative Neurology, 531(9), 975–1006.

Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57(4), 591–601.

Ridgway, S. H., Brownson, R. H., Van Alstyne, K. R., & Hauser, R. A. (2019). Higher neuron densities in the cerebral cortex and larger cerebellums may limit dive times of delphinids compared to deep‐diving toothed whales. PLoS One, 14(12), e0226206.

Roese‐Miron, L., Jones, M. E. H., Ferreira, J. D., & Hsiou, A. S. (2024). Virtual endocasts of Clevosaurus brasiliensis and the tuatara: Rhynchocephalian neuroanatomy and the oldest endocranial record for Lepidosauria. The Anatomical Record, 307(4), 1366–1389. https://doi.org/10.1002/ar.25212

Rogers, S. W. (1998). Exploring dinosaur neuropaleobiology: Computed tomography scanning and analysis of an Allosaurus fragilis endocast. Neuron, 21(4), 673–679.

Rutz, C., Klump, B. C., Komarczyk, L., Leighton, R., Kramer, J., Wischnewski, S., Sugasawa, S., Morrissey, M. B., James, R., St Clair, J. J. H., Switzer, R. A., & Masuda, B. M. (2016). Discovery of species‐wide tool use in the Hawaiian crow. Nature, 537(7620), 403–407.

Sakamoto, M. (2022). Estimating bite force in extinct dinosaurs using phylogenetically predicted physiological cross‐sectional areas of jaw adductor muscles. PeerJ, 10, e13731.

Sampson, S. D., & Witmer, L. M. (2007). Craniofacial anatomy of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the late cretaceous of Madagascar. Journal of Vertebrate Paleontology, 27(S2), 32–104.

Saveliev, S. V., & Alifanov, V. R. (2007). A new study of the brain of the predatory dinosaur Tarbosaurus bataar (Theropoda, Tyrannosauridae). Paleontological Journal, 41(3), 281–289.

Schliep, K., Paradis, E., de Oliveira Martins, L., Potts, A., White, T. W., Stachniss, C., & Kendall, M. (2019). Package ‘phangorn’. Available at: https://cran.r-project.org/web/packages/phangorn/phangorn.pdf

Schmitt, V., Pankau, B., & Fischer, J. (2012). Old world monkeys compare to apes in the primate cognition test battery. PLoS One, 7(4), e32024.

Schweitzer, M. H., Wittmeyer, J. L., & Horner, J. R. (2005). Gender‐specific reproductive tissue in ratites and Tyrannosaurus rex. Science, 308(5727), 1456–1460.

Sereno, P. C., Tan, L., Brusatte, S. L., Kriegstein, H. J., Zhao, X., & Cloward, K. (2009). Tyrannosaurid skeletal design first evolved at small body size. Science, 326(5951), 418–422.

Seymour, R. S., Bennett‐Stamper, C. L., Johnston, S. D., Carrier, D. R., & Grigg, G. C. (2004). Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution. Physiological and Biochemical Zoology, 77(6), 1051–1067.

Shatkovska, O. V., & Ghazali, M. (2021). Relative skull size as one of the factors limiting skull shape variation in passerines. Canadian Journal of Zoology, 99(12), 1054–1066.

Shumaker, R. W., Walkup, K. R., & Beck, B. B. (2011). Animal Tool Behavior: The Use and Manufacture of Tools by Animals (revised and updated edition edition). Johns Hopkins University Press.

Smaers, J. B., Rothman, R. S., Hudson, D. R., Balanoff, A. M., Beatty, B., Dechmann, D. K., … Safi, K. (2021). The evolution of mammalian brain size. Science. Advances, 7(18), eabe2101.

Sol, D., Olkowicz, S., Sayol, F., Kocourek, M., Zhang, Y., Marhounová, L., … Němec, P. (2022). Neuron numbers link innovativeness with both absolute and relative brain size in birds. Nature Ecology & Evolution, 6(9), 1381–1389.

Spence, R. D., Zhen, Y., White, S., Schlinger, B. A., & Day, L. B. (2009). Recovery of motor and cognitive function after cerebellar lesions in a songbird—Role of estrogens. European Journal of Neuroscience, 29(6), 1225–1234.

Stone, E. A. (2011). Why the phylogenetic regression appears robust to tree misspecification. Systematic Biology, 60(3), 245–260.

Ströckens, F., Neves, K., Kirchem, S., Schwab, C., Herculano‐Houzel, S., & Güntürkün, O. (2022). High associative neuron numbers could drive cognitive performance in corvid species. Journal of Comparative Neurology, 530(10), 1588–1605.

Symonds, M. R. (2002). The effects of topological inaccuracy in evolutionary trees on the phylogenetic comparative method of independent contrasts. Systematic Biology, 51(4), 541–553.

Tartarelli, G., & Bisconti, M. (2006). Trajectories and constraints in brain evolution in primates and cetaceans. Human Evolution, 21, 275–287.

Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W., & Pyron, R. A. (2016). Fully‐sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conservation, 204, 23–31.

Triki, Z., Aellen, M., van Schaik, C. P., & Bshary, R. (2021). Relative brain size and cognitive equivalence in fishes. Brain, Behavior and Evolution, 96(3), 124–136.

Troscianko, J., von Bayern, A. M. P., Chappell, J., Rutz, C., & Martin, G. R. (2012). Extreme binocular vision and a straight bill facilitate tool use in new Caledonian crows. Nature Communications, 3(1), 1110.

Tsuboi, M., van der Bijl, W., Kopperud, B. T., Erritzøe, J., Voje, K. L., Kotrschal, A., … Kolm, N. (2018). Breakdown of brain–body allometry and the encephalization of birds and mammals. Nature Ecology & Evolution, 2(9), 1492–1500.

Ulinski, P. S., & Margoliash, D. (1990). Neurobiology of the reptile‐bird transition. In E. G. Jones & A. Peters (Eds.), Comparative structure and evolution of cerebral cortex, part I (pp. 217–265). Springer.

Van Schaik, C. P., Triki, Z., Bshary, R., & Heldstab, S. A. (2021). A farewell to the encephalization quotient: A new brain size measure for comparative primate cognition. Brain, Behavior and Evolution, 96(1), 1–12.

Varricchio, D. J., Martin, A. J., & Katsura, Y. (2007). First trace and body fossil evidence of a burrowing, denning dinosaur. Proceedings of the Royal Society B, 274, 1361–1368.

Walsh, S., & Milner, A. (2011). Halcyornis toliapicus (Aves: Lower Eocene, England) indicates advanced neuromorphology in Mesozoic Neornithes. Journal of Systematic Palaeontology, 9(1), 173–181.

Wang, Y., Claessens, L. P. A. M., & Sullivan, C. (2023). Deep reptilian evolutionary roots of a major avian respiratory adaptation. Communications Biology, 6, 3.

Watanabe, A., Gignac, P. M., Balanoff, A. M., Green, T. L., Kley, N. J., & Norell, M. A. (2019). Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? Journal of Anatomy, 234(3), 291–305.

Wedel, M. J. (2006). Origin of postcranial skeletal pneumaticity in dinosaurs. Integrative Zoology, 1(2), 80–85.

Wiemann, J., Menéndez, I., Crawford, J. M., Fabbri, M., Gauthier, J. A., Hull, P. M., … Briggs, D. E. (2022). Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur. Nature, 606(7914), 522–526.

Witmer, L. M., Chatterjee, S., Franzosa, J., & Rowe, T. (2003). Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature, 425(6961), 950–953.

Witmer, L. M., Ridgely, R. C., Dufeau, D. L., & Semones, M. C. (2008). Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs. In H. Endo & R. Frey (Eds.), Anatomical imaging: Towards a new morphology (pp. 67–87). Springer.

Witmer, L. M., & Ridgely, R. C. (2009). New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. The Anatomical Record, 292(9), 1266–1296.

Woodward, A., Moore, C. T., & Delaney, M. F. (1991). Experimental alligator harvest: Final report. Study no. 7567. Bureau of Wildlife Research, Florida Game and Fresh Water Fish Commission, Tallahassee, 118pp.

Woodward, H. N., Tremaine, K., Williams, S. A., Zanno, L. E., Horner, J. R., & Myhrvold, N. (2020). Growing up Tyrannosaurus rex: Osteohistology refutes the pygmy “Nanotyrannus” and supports ontogenetic niche partitioning in juvenile Tyrannosaurus. Science Advances, 6(1), eaax6250.

Yu, Y., Karbowski, J., Sachdev, R. N., & Feng, J. (2014). Effect of temperature and glia in brain size enlargement and origin of allometric body‐brain size scaling in vertebrates. BMC Evolutionary Biology, 14(1), 1–14.

Zeiträg, C., Jensen, T. R., & Osvath, M. (2022). Gaze following: A socio‐cognitive skill rooted in deep time. Frontiers in Psychology, 13, 950935.

Zeiträg, C., Reber, S. A., & Osvath, M. (2023). Gaze following in Archosauria—Alligators and palaeognath birds suggest dinosaur origin of visual perspective taking. Science Advances, 9(20), eadf0405.

Zelenitsky, D. K., Therrien, F., Ridgely, R. C., McGee, A. R., & Witmer, L. M. (2011). Evolution of olfaction in non‐avian theropod dinosaurs and birds. Proceedings of the Royal Society B: Biological Sciences, 278(1725), 3625–3634.

Zhou, C. F., Gao, K. Q., Fox, R. C., & Du, X. K. (2007). Endocranial morphology of psittacosaurs (Dinosauria: Ceratopsia) based on CT scans of new fossils from the lower cretaceous, China. Palaeoworld, 16(4), 285–293.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...