Endophyte Inoculation and Elevated Potassium Supply on Productivity, Growth and Physiological Parameters of Spring Barley (Hordeum vulgare L.) Genotypes over Contrasting Seasons
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
MZE-RO1123, MZE-RO0423, QK1910197, QL24010008
Ministry of Agriculture
IGA_PrF_2024_001
Palacký University, Olomouc
MUNI/A/1492/2023
Masaryk University
PubMed
38674576
PubMed Central
PMC11054443
DOI
10.3390/plants13081168
PII: plants13081168
Knihovny.cz E-resources
- Keywords
- Serendipita indica, carbon stable isotope, drought, genotype, potassium, soluble sugars, spring barley, δ13C,
- Publication type
- Journal Article MeSH
In recent years, recurrent droughts have significantly affected spring barley production, reducing the quantity and quality of grain. This study aims to identify genotype-specific traits and the drought resilience of six different Hordeum vulgare L. (spring barley) genotypes, while also examining the potential of potassium application and fungal endophyte Serendipita indica inoculation to mitigate the negative effects of dry periods during the growing season. Field experiments were conducted over a three-year period from 2020 to 2022, measuring physiological, growth, and yield parameters. To get insight into the physiological state of the plants, we measured the soluble sugars content and the ratio of stable carbon isotopes in the flag leaf tissue, which reflects conditions during its formation. The dominant factors that influenced the measured parameters were the genotypes and seasons, as well as their interaction, rather than other experimental factors. The results showed that the Spitfire and Accordine varieties were the best performing in both the 2020 and 2021 seasons, as indicated by their yield. However, in the drier 2022 season, the yield of these two varieties decreased significantly (to 55% for Spitfire and to 69% for Accordine of their yield in 2021), while for the arid-region genotypes, it remained at the same level as the previous year. This study sheds light on the potential of various genotypes to withstand periods of drought and the effectiveness of using potassium application and S. indica inoculation as mitigation approaches.
Agrotest Fyto Ltd 76701 Kroměříž Czech Republic
Department of Botany Faculty of Science Palacký University in Olomouc 78371 Olomouc Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Gene Bank Crop Research Institute Drnovská 507 16106 Praha 6 Ruzyně Czech Republic
See more in PubMed
Shakoor U., Saboor A., Ali I., Mohsin A.Q. Impact of Climate Change on Agriculture: Empirical Evidence from Arid Region. Pak. J. Agric. Sci. 2011;48:327–333.
Dodd I.C., Ryan A.C. eLS—Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.; Chichester, UK: 2016. Whole-Plant Physiological Responses to Water-Deficit Stress; pp. 1–9.
Osakabe Y., Osakabe K., Shinozaki K., Tran L.-S.P. Response of Plants to Water Stress. Front. Plant Sci. 2014;5:86. doi: 10.3389/fpls.2014.00086. PubMed DOI PMC
Hermans K., McLeman R. Climate Change, Drought, Land Degradation and Migration: Exploring the Linkages. Curr. Opin. Environ. Sustain. 2021;50:236–244. doi: 10.1016/j.cosust.2021.04.013. DOI
Kaur H., Kohli S.K., Khanna K., Bhardwaj R. Scrutinizing the Impact of Water Deficit in Plants: Transcriptional Regulation, Signaling, Photosynthetic Efficacy, and Management. Physiol. Plant. 2021;172:935–962. doi: 10.1111/ppl.13389. PubMed DOI
Trnka M., Semerádová D., Novotný I., Dumbrovský M., Drbal K., Pavlík F., Vopravil J., Štěpánková P., Vizina A., Balek J., et al. Assessing the Combined Hazards of Drought, Soil Erosion and Local Flooding on Agricultural Land: A Czech Case Study. Clim. Res. 2016;70:231–249. doi: 10.3354/cr01421. DOI
Kibblewhite M.G., Ritz K., Swift M.J. Soil Health in Agricultural Systems. Phil. Trans. R. Soc. B. 2008;363:685–701. doi: 10.1098/rstb.2007.2178. PubMed DOI PMC
Wyka T.P., Bagniewska-Zadworna A., Kuczyńska A., Mikołajczak K., Ogrodowicz P., Żytkowiak M., Surma M., Adamski T. Drought-Induced Anatomical Modifications of Barley (Hordeum vulgare L.) Leaves: An Allometric Perspective. Environ. Exp. Bot. 2019;166:103798. doi: 10.1016/j.envexpbot.2019.103798. DOI
Zulfiqar F., Younis A., Riaz A., Mansoor F., Hameed M.A., Akram N.A., Abideen Z. Morpho-anatomical adaptations of two Tagetes erecta L. cultivars with contrasting response to drought stress. Pak. J. Bot. 2020;52:801–810. doi: 10.30848/PJB2020-3(35). PubMed DOI
Basu S., Ramegowda V., Kumar A., Pereira A. Plant Adaptation to Drought Stress. F1000Research. 2016;5:1554. doi: 10.12688/f1000research.7678.1. PubMed DOI PMC
Chaves M.M., Maroco J.P., Pereira J.S. Understanding Plant Responses to Drought—From Genes to the Whole Plant. Funct. Plant Biol. 2003;30:239–264. doi: 10.1071/FP02076. PubMed DOI
Shankar Naik B. Functional Roles of Fungal Endophytes in Host Fitness during Stress Conditions. Symbiosis. 2019;79:99–115. doi: 10.1007/s13199-019-00635-1. DOI
Singh L.P., Gill S.S., Tuteja N. Unraveling the Role of Fungal Symbionts in Plant Abiotic Stress Tolerance. Plant Signal. Behav. 2011;6:175–191. doi: 10.4161/psb.6.2.14146. PubMed DOI PMC
Ghaffari M.R., Mirzaei M., Ghabooli M., Khatabi B., Wu Y., Zabet-Moghaddam M., Mohammadi-Nejad G., Haynes P.A., Hajirezaei M.R., Sepehri M., et al. Endophytic Fungus Piriformospora Indica Improves Drought Stress Adaptation in Barley by Metabolic and Proteomic Reprogramming. Environ. Exp. Bot. 2019;157:197–210. doi: 10.1016/j.envexpbot.2018.10.002. DOI
Murphy B.R., Martin Nieto L., Doohan F.M., Hodkinson T.R. Fungal Endophytes Enhance Agronomically Important Traits in Severely Drought-stressed Barley. J. Agron. Crop Sci. 2015;201:419–427. doi: 10.1111/jac.12139. DOI
Bleša D., Matušinský P., Sedmíková R., Baláž M. The Potential of Rhizoctonia-Like Fungi for the Biological Protection of Cereals against Fungal Pathogens. Plants. 2021;10:349. doi: 10.3390/plants10020349. PubMed DOI PMC
Zhang Y., Yu X., Zhang W., Lang D., Zhang X., Cui G., Zhang X. Interactions between Endophytes and Plants: Beneficial Effect of Endophytes to Ameliorate Biotic and Abiotic Stresses in Plants. J. Plant Biol. 2019;62:1–13. doi: 10.1007/s12374-018-0274-5. DOI
Baron N.C., Rigobelo E.C. Endophytic Fungi: A Tool for Plant Growth Promotion and Sustainable Agriculture. Mycology. 2022;13:39–55. doi: 10.1080/21501203.2021.1945699. PubMed DOI PMC
Hong Y., Zhang G. The Influence of Drought Stress on Malt Quality Traits of the Wild and Cultivated Barleys. J. Integr. Agric. 2020;19:2009–2015. doi: 10.1016/S2095-3119(19)62794-2. DOI
Tyagi J., Chaudhary P., Mishra A., Khatwani M., Dey S., Varma A. Role of Endophytes in Abiotic Stress Tolerance: With Special Emphasis on Serendipita indica. Int. J. Environ. Res. 2022;16:62. doi: 10.1007/s41742-022-00439-0. DOI
Ghaffari M.R., Ghabooli M., Khatabi B., Hajirezaei M.R., Schweizer P., Salekdeh G.H. Metabolic and Transcriptional Response of Central Metabolism Affected by Root Endophytic Fungus Piriformospora indica under Salinity in Barley. Plant Mol. Biol. 2016;90:699–717. doi: 10.1007/s11103-016-0461-z. PubMed DOI
Achatz B., Kogel K.-H., Franken P., Waller F. Piriformospora indica Mycorrhization Increases Grain Yield by Accelerating Early Development of Barley Plants. Plant Signal. Behav. 2010;5:1685–1687. doi: 10.4161/psb.5.12.14112. PubMed DOI PMC
Bago B., Pfeffer P.E., Abubaker J., Jun J., Allen J.W., Brouillette J., Douds D.D., Lammers P.J., Shachar-Hill Y. Carbon Export from Arbuscular Mycorrhizal Roots Involves the Translocation of Carbohydrate as Well as Lipid. Plant Physiol. 2003;131:1496–1507. doi: 10.1104/pp.102.007765. PubMed DOI PMC
Rozpądek P., Wężowicz K., Nosek M., Ważny R., Tokarz K., Lembicz M., Miszalski Z., Turnau K. The Fungal Endophyte Epichloë Typhina Improves Photosynthesis Efficiency of Its Host Orchard Grass (Dactylis glomerata) Planta. 2015;242:1025–1035. doi: 10.1007/s00425-015-2337-x. PubMed DOI PMC
Baum M., Von Korff M., Guo P., Lakew B., Hamwieh A., Lababidi S., Udupa S.M., Sayed H., Choumane W., Grando S., et al. Molecular Approaches and Breeding Strategies for Drought Tolerance in Barley. In: Varshney R.K., Tuberosa R., editors. Genomics-Assisted Crop Improvement: Vol 2: Genomics Applications in Crops. Springer; Dordrecht, The Netherlands: 2007. pp. 51–79.
Sabagh A.E., Hossain A., Islam M.S., Barutcular C., Hussain S., Hasanuzzaman M., Akram T., Mubeen M., Nasim W., Fahad S., et al. Drought and Salinity Stresses in Barley: Consequences and Mitigation Strategies. Aust. J. Crop Sci. 2019;13:810–820. doi: 10.21475/ajcs.19.13.06.p1286. DOI
Zulfiqar F., Hancock J.T. Hydrogen sulfide in horticulture: Emerging roles in the era of climate change. Plant Physiol. Biochem. 2020;155:667–675. doi: 10.1016/j.plaphy.2020.08.010. PubMed DOI
O’Donovan J.T., Turkington T.K., Edney M.J., Clayton G.W., McKenzie R.H., Juskiw P.E., Lafond G.P., Grant C.A., Brandt S., Harker K.N. Seeding Rate, Nitrogen Rate, and Cultivar Effects on Malting Barley Production. Agron. J. 2011;103:709–716. doi: 10.2134/agronj2010.0490. DOI
Asghar M.G., Bashir A. Protagonist of Mineral Nutrients in Drought Stress Tolerance of Field Crops. In: Fahad S., Saud S., Chen Y., Wu C., Wang D., editors. Abiotic Stress in Plants. IntechOpen; Rijeka, Croatia: 2020. Chapter 9.
Sehar S., Adil M.F., Zeeshan M., Holford P., Cao F., Wu F., Wang Y. Mechanistic Insights into Potassium-Conferred Drought Stress Tolerance in Cultivated and Tibetan Wild Barley: Differential Osmoregulation, Nutrient Retention, Secondary Metabolism and Antioxidative Defense Capacity. Int. J. Mol. Sci. 2021;22:13100. doi: 10.3390/ijms222313100. PubMed DOI PMC
Andersen M.N., Jensen C.R., Lösch R. The Interaction Effects of Potassium and Drought in Field-Grown Barley. II. Nutrient Relations, Tissue Water Content and Morphological Development. Acta Agric. Scand. B Soil Plant Sci. 1992;42:45–56. doi: 10.1080/09064719209410198. DOI
Jones C.A., Jacobsen J.S., Wraith J.M. Response of Malt Barley to Phosphorus Fertilization Under Drought Conditions. J. Plant Nutr. 2005;28:1605–1617. doi: 10.1080/01904160500203531. DOI
Tavakol E., Jákli B., Cakmak I., Dittert K., Senbayram M. Optimization of Potassium Supply under Osmotic Stress Mitigates Oxidative Damage in Barley. Plants. 2022;11:55. doi: 10.3390/plants11010055. PubMed DOI PMC
Askarnejad M.R., Soleymani A., Javanmard H.R. Barley (Hordeum vulgare L.) Physiology Including Nutrient Uptake Affected by Plant Growth Regulators under Field Drought Conditions. J. Plant Nutr. 2021;44:2201–2217. doi: 10.1080/01904167.2021.1889593. DOI
Ragel P., Raddatz N., Leidi E.O., Quintero F.J., Pardo J.M. Regulation of K+ Nutrition in Plants. Front. Plant Sci. 2019;10:281. doi: 10.3389/fpls.2019.00281. PubMed DOI PMC
Zulfiqar F., Nafees M., Darras A., Shaukat N., Chen J., Ferrante A., Zaid A., Latif N., Raza A., Siddique K.H. Pre-harvest potassium foliar application improves yield, vase life and overall postharvest quality of cut gladiolus inflorescences. Postharvest Biol. Technol. 2022;192:112027. doi: 10.1016/j.postharvbio.2022.112027. DOI
Wójcik-Jagła M., Rapacz M., Tyrka M., Kościelniak J., Crissy K., Żmuda K. Comparative QTL Analysis of Early Short-Time Drought Tolerance in Polish Fodder and Malting Spring Barleys. Theor. Appl. Genet. 2013;126:3021–3034. doi: 10.1007/s00122-013-2190-x. PubMed DOI PMC
Barnabás B., Jäger K., Fehér A. The Effect of Drought and Heat Stress on Reproductive Processes in Cereals. Plant Cell Environ. 2008;31:11–38. doi: 10.1111/j.1365-3040.2007.01727.x. PubMed DOI
Kolář P., Trnka M., Brázdil R., Hlavinka P. Influence of Climatic Factors on the Low Yields of Spring Barley and Winter Wheat in Southern Moravia (Czech Republic) during the 1961–2007 Period. Theor. Appl. Climatol. 2014;117:707–721. doi: 10.1007/s00704-013-1037-3. DOI
Khosravinejad F., Heydari R., Farboodnia T. Effect of Salinity on Organic Solutes Contents in Barley. Pak. J. Biol. Sci. 2009;12:158–162. doi: 10.3923/pjbs.2009.158.162. PubMed DOI
Munjonji L., Ayisi K.K., Vandewalle B., Haesaert G., Boeckx P. Carbon Isotope Discrimination as a Surrogate of Grain Yield in Drought Stressed Triticale. In: Leal Filho W., Belay S., Kalangu J., Menas W., Munishi P., Musiyiwa K., editors. Climate Change Adaptation in Africa. Climate Change Management. Springer; Cham, Switzerland: 2017. DOI
Cernusak L.A., Ubierna N., Winter K., Holtum J.A., Marshall J.D., Farquhar G.D. Environmental and Physiological Determinants of Carbon Isotope Discrimination in Terrestrial Plants. New Phytol. 2013;200:950–965. doi: 10.1111/nph.12423. PubMed DOI
Chen J., Chang S.X., Anyia A.O. The Physiology and Stability of Leaf Carbon Isotope Discrimination as a Measure of Water-Use Efficiency in Barley on the Canadian Prairies. J. Agron. Crop Sci. 2011;197:1–11. doi: 10.1111/j.1439-037X.2010.00440.x. DOI
Schelling K., Born K., Weissteiner C., Kühbauch W. Relationships between Yield and Quality Parameters of Malting Barley (Hordeum vulgare L.) and Phenological and Meteorological Data. J. Agron. Crop Sci. 2003;189:113–122. doi: 10.1046/j.1439-037X.2003.00011.x. DOI
Bütehorn B., Rhody D., Franken P. Isolation and Characterisation of Pitef1 Encoding the Translation Elongation Factor EF-1α of the Root Endophyte Piriformospora indica. Plant Biol. 2000;2:687–692. doi: 10.1055/s-2000-16647. DOI
Lancashire P.D., Bleiholder H., Boom T.V.D., Langelüddeke P., Stauss R., Weber E., Witzenberger A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991;119:561–601. doi: 10.1111/j.1744-7348.1991.tb04895.x. DOI
DuBois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956;28:350–356. doi: 10.1021/ac60111a017. DOI
Native Starch—Determination of Starch Content—Ewers Polarimetric Method. ISO International Organization for Standardization; Geneva, Switzerland: 1997.
Klem K., Rajsnerová P., Novotná K., Mìša P., Křen J. Changes in Vertical Distribution of Spectral Reflectance within Spring Barley Canopy as an Indicator of Nitrogen Nutrition, Canopy Structure and Yield Parameters. Agriculture (Pol’nohospodárstvo) 2014;60:50–59. doi: 10.2478/agri-2014-0006. DOI
Kaczmarek M., Fedorowicz-Strońska O., Głowacka K., Waśkiewicz A., Sadowski J. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.) Acta Physiol. Plant. 2017;39:41. doi: 10.1007/s11738-016-2336-y. DOI
Sazegari S., Zinati Z., Tahmasebi A. Dynamic transcriptomic analysis uncovers key genes and mechanisms involved in seed priming-induced tolerance to drought in barley. Gene Rep. 2020;21:100941. doi: 10.1016/j.genrep.2020.100941. DOI
Daszkowska-Golec A., Collin A., Sitko K., Janiak A., Kalaji H.M., Szarejko I. Genetic and physiological dissection of photosynthesis in barley exposed to drought stress. Int. J. Mol. Sci. 2019;20:6341. doi: 10.3390/ijms20246341. PubMed DOI PMC
de Mezer M., Turska-Taraska A., Kaczmarek Z., Glowacka K., Swarcewicz B., Rorat T. Differential physiological and molecular response of barley genotypes to water deficit. Plant Physiol. Biochem. 2014;80:234–248. doi: 10.1016/j.plaphy.2014.03.025. PubMed DOI
Kirby E.J.M. Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crops Res. 1988;18:127–140. doi: 10.1016/0378-4290(88)90004-4. DOI
Waddington S.R., Cartwright P.M., Wall P.C. A quantitative scale of spike initial and pistil development in barley and wheat. Ann. Bot. 1983;51:119–130. doi: 10.1093/oxfordjournals.aob.a086434. DOI
Gómez J.F., Wilson Z.A. Non-destructive staging of barley reproductive development for molecular analysis based upon external morphology. J. Exp. Bot. 2012;63:4085–4094. doi: 10.1093/jxb/ers092. PubMed DOI PMC
Boussora F., Allam M., Guasmi F., Ferchichi A., Rutten T., Hansson M., Helmy M.Y., Börner A. Spike developmental stages and ABA role in spikelet primordia abortion contribute to the final yield in barley (Hordeum vulgare L.) Bot. Stud. 2019;60:13. doi: 10.1186/s40529-019-0261-2. PubMed DOI PMC
Hu Y., Barmeier G., Schmidhalter U. Genetic Variation in Grain Yield and Quality Traits of Spring Malting Barley. Agronomy. 2021;11:1177. doi: 10.3390/agronomy11061177. DOI
Hussain S., Ali B., Saqib M. Chapter 15—Seed Priming to Enhance Salt and Drought Stress Tolerance in Plants: Advances and Prospects. In: Shanker A.K., Shanker C., Anand A., Maheswari M., editors. Climate Change and Crop Stress. Academic Press; Cambridge, MA, USA: 2022. pp. 441–464.
Tabassum T., Ahmad R., Farooq M., Basra S.M.A. Improving the Drought Tolerance in Barley by Osmopriming and Biopriming. Int. J. Agric. Biol. 2018;20:1597–1606.
Abideen Z., Cardinale M., Zulfiqar F., Koyro H.W., Rasool S.G., Hessini K., Darbali W., Zhao F., Siddique K.H. Seed endophyte bacteria enhance drought stress tolerance in Hordeum vulgare by regulating, physiological characteristics, antioxidants and minerals uptake. Front. Plant Sci. 2022;13:980046. doi: 10.3389/fpls.2022.980046. PubMed DOI PMC