Measurement and Analysis of 4G/5G Mobile Signal Coverage in a Heavy Industry Environment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38676154
PubMed Central
PMC11054803
DOI
10.3390/s24082538
PII: s24082538
Knihovny.cz E-zdroje
- Klíčová slova
- 4G, 5G, coverage mapping, industrial factory, key performance indicators, mobile networks,
- Publikační typ
- časopisecké články MeSH
In the evolving landscape of Industry 4.0, the integration of advanced wireless technologies into manufacturing processes holds the promise of unprecedented connectivity and efficiency. In particular, the data transmission in a heavy industry environment needs stable connectivity with mobile operators. This paper deals with the performance study of 4G and 5G mobile signal coverage within a complex factory environment. For this purpose, a cost-effective and portable measurement setup was realized and used to provide long-term measurement campaigns monitoring and recording several key parameter indicators (KPIs) in 4G/5G downlink and upload. To support the reproducibility of the provided study and other research activities, the measured dataset is publicly available for download. Among others findings, the obtained results show how the performance of 4G/5G is influenced by a heavy industry environment and of the time of day on the network load.
Zobrazit více v PubMed
Nakimuli W., Garcia-Reinoso J., Sierra-Garcia J.E., Serrano P., Fernández I.Q. Deployment and Evaluation of an Industry 4.0 Use Case over 5G. IEEE Commun. Mag. 2021;59:14–20. doi: 10.1109/MCOM.001.2001104. DOI
Temesvári Z.M., Maros D., Kádár P. Review of Mobile Communication and the 5G in Manufacturing. Procedia Manuf. 2019;32:600–612. doi: 10.1016/j.promfg.2019.02.259. DOI
Haq I., Soomro J.A., Mazhar T., Ullah I., Shloul T.A., Ghadi Y.Y., Ullah I., Saad A., Tolba A. Impact of 3G and 4G Technology Performance on Customer Satisfaction in the Telecommunication Industry. Electronics. 2023;12:1697. doi: 10.3390/electronics12071697. DOI
El-Saleh A.A., Alhammadi A., Shayea I., Hassan W.H., Honnurvali M.S., Daradkeh Y.I. Measurement analysis and performance evaluation of mobile broadband cellular networks in a populated city. Alex. Eng. J. 2023;66:927–946. doi: 10.1016/j.aej.2022.10.052. DOI
Rodriguez I., Mogensen R.S., Fink A., Raunholt T., Markussen S., Christensen P.H., Berardinelli G., Mogensen P., Schou C., Madsen O. An experimental framework for 5G wireless system integration into industry 4.0 applications. Energies. 2021;14:4444. doi: 10.3390/en14154444. DOI
Burmeister F., Schwarzenberg N., Höβler T., Fettweis G. Measuring Time-Varying Industrial Radio Channels for D2D Communications on AGVs; Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC); Nanjing, China. 29 March–1 April 2021; pp. 1–7. DOI
Fink A., Mogensen R.S., Rodriguez I., Kolding T., Karstensena A., Pocovi G. Empirical Performance Evaluation of EnterpriseWi-Fi for IIoT Applications Requiring Mobility; Proceedings of the European Wireless 2021, 26th European Wireless Conference; Verona, Italy. 10–12 November 2021; pp. 1–8.
Rekoputra N.M., Tseng C.W., Wang J.T., Liang S.H., Cheng R.G., Li Y.F., Yang W.H. Implementation and Evaluation of 5G MEC-Enabled Smart Factory. Electronics. 2023;12:1310. doi: 10.3390/electronics12061310. DOI
Lyczkowski E., Munz H.A., Kiess W., Joshi P. Performance of Private LTE on the Factory Floor; Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops); Dublin, Ireland. 7–11 June 2020; pp. 1–6. DOI
Schmieder M., Eichler T., Wittig S., Peter M., Keusgen W. Measurement and Characterization of an Indoor Industrial Environment at 3.7 and 28 GHz; Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP); Copenhagen, Denmark. 15–20 March 2020; pp. 1–5. DOI
Mi H., Ai B., He R., Wu T., Zhou X., Zhong Z., Zhang H., Chen R. Multi-Scenario Millimeter Wave Channel Measurements and Characteristic Analysis in Smart Warehouse at 28 GHz. Electronics. 2023;12:3373. doi: 10.3390/electronics12153373. DOI
Raida V., Svoboda P., Koglbauer M., Rupp M. On the Stability of RSRP and Variability of Other KPIs in LTE Downlink–An Open Dataset; Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference; Taipei, Taiwan. 7–11 December 2020; pp. 1–6. DOI
Raida V., Svoboda P., Rupp M. Real World Performance of LTE Downlink in a Static Dense Urban Scenario–An Open Dataset; Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference; Taipei, Taiwan. 7–11 December 2020; pp. 1–6. DOI
Mahmud I., Lubna T., Cho Y.Z. Performance evaluation of MPTCP on simultaneous use of 5G and 4G networks. Sensors. 2022;22:7509. doi: 10.3390/s22197509. PubMed DOI PMC
Kousias K., Rajiullah M., Caso G., Ali U., Alay O., Brunstrom A., Nardis L.D., Neri M., Benedetto M.G.D. A Large-Scale Dataset of 4G, NB-IoT, and 5G Non-Standalone Network Measurements. IEEE Commun. Mag. 2023:1–7. doi: 10.1109/MCOM.011.2200707. DOI
GitHub Measurement of 4G/5G Mobile Signal Coverage in a Heavy Industry Environment—The Dataset. [(accessed on 4 February 2024)]. Available online: https://github.com/polak-l/4G-5G-Mobile-Signal-Coverage-in-a-Factory.
Implementation and Development of 5G Networks in the Czech Republic. [(accessed on 4 February 2024)]. Available online: https://www.dataplan.info/img_upload/7bdb1584e3b8a53d337518d988763f8d/implementace-a-rozvoj-siti-5g-v-cr-en.pdf.
Mohamed R., Zemouri S., Verikoukis C. Performance Evaluation and Comparison between SA and NSA 5G Networks in Indoor Environment; Proceedings of the 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom); Athens, Greece. 7–10 September 2021; pp. 112–116. DOI
HP HP ProDesk 400 G6 Mini PC. [(accessed on 4 February 2024)]. Available online: https://support.hp.com/sk-en/document/c06706059.
QUECTEL RM502QAEAA-M20-SGASA; IoT/M2M-Optimized 5G M.2 Module. [(accessed on 4 February 2024)]. Available online: https://www.soselectronic.com/en/products/quectel/rm502qaeaa-m20-sgasa-1-347566.
QUECTEL PCIECARDEVB-KIT; Evaluation Board for RM500Q 5G Module. [(accessed on 4 February 2024)]. Available online: https://www.soselectronic.com/en/products/quectel/pciecardevb-kit-1-337570.
Shakir Z., Mjhool A.Y., Al-Thaedan A., Al-Sabbagh A., Alsabah R. Key performance indicators analysis for 4 G-LTE cellular networks based on real measurements. Int. J. Inf. Technol. 2023;15:1347–1355. doi: 10.1007/s41870-023-01210-0. DOI
3GPP LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer; Measurements (3GPP TS 36.214 Version 14.2.0 Release 14) 2017. [(accessed on 4 February 2024)]. Available online: https://www.etsi.org/deliver/etsi_ts/136200_136299/136214/14.02.00_60/ts_136214v140200p.pdf.
Rangeful What Is RSSI, SINR, RSRP, RSRQ? How Does This Affect Signal Quality? [(accessed on 4 February 2024)]. Available online: https://www.rangeful.com/what-is-rssi-sinr-rsrp-rsrq-how-does-this-affect-signal-quality/
Mir U., Nuaymi L. Comparison of Policy Realization Strategies for LTE Networks; Proceedings of the 2012 IEEE Vehicular Technology Conference (VTC Fall); Quebec City, QC, Canada. 3–6 September 2012; pp. 1–6. DOI
Milos J., Polak L., Hanus S., Kratochvil T. Wi-Fi influence on LTE downlink data and control channel performance in shared frequency bands. Radioengineering. 2017;26:201–210. doi: 10.13164/re.2017.0201. DOI
Tajmac-ZPS a.s. [(accessed on 4 February 2024)]. Available online: https://www.tajmac-zps.cz/tajmac-group/
Japertas S., Grimaila V. Mobile signal path losses in microcells behind buildings. Radioengineering. 2017;26:191–197. doi: 10.13164/re.2017.0191. DOI
Tekovic A., Bonefacic D., Sisul G., Nad R. Interference analysis between mobile radio and digital terrestrial television in the digital dividend spectrum. Radioengineering. 2017;26:211–220. doi: 10.13164/re.2017.0211. DOI
Nguyen N.L., Tu L.T., Nguyen T.N., Nguyen P.L.T., Nguyen Q.S. Performance on cognitive broadcasting networks employing Fountain codes and maximal ratio transmission. Radioengineering. 2023;32:1–10. doi: 10.13164/re.2023.0001. DOI
Bipon A.A., Osman A., Islam M.S., Asyhari A.T., Abozariba R. Pathfinder: End-to-End Automation of Coverage Mapping of 4G/5G Networks at Street Level; Proceedings of the 2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON); Madrid, Spain. 11–14 September 2023; pp. 375–377. DOI
Zhang L., Chu X., Zhai M. Machine Learning-Based Integrated Wireless Sensing and Positioning for Cellular Network. IEEE Trans. Instrum. Meas. 2023;72:5501011. doi: 10.1109/TIM.2022.3224513. DOI
Rochman M.I., Sathya V., Fernandez D., Nunez N., Ibrahim A.S., Payne W., Ghosh M. A comprehensive analysis of the coverage and performance of 4G and 5G deployments. Comput. Netw. 2023;237:110060. doi: 10.1016/j.comnet.2023.110060. DOI
Al-Thaedan A., Shakir Z., Mjhool A.Y., Alsabah R., Al-Sabbagh A., Nembhard F., Salah M. A machine learning framework for predicting downlink throughput in 4G-LTE/5G cellular networks. Int. J. Inf. Technol. 2024;16:651–657. doi: 10.1007/s41870-023-01678-w. DOI