Surface-Enhanced Raman Spectroscopy and Artificial Neural Networks for Detection of MXene Flakes' Surface Terminations
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38690535
PubMed Central
PMC11056973
DOI
10.1021/acs.jpcc.4c01273
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The properties of MXene flakes, a new class of two-dimensional materials, are strictly determined by their surface termination. The most common termination groups are oxygen-containing (=O or -OH) and fluorine (-F), and their relative ratio is closely related to flake stability and catalytic activity. The surface termination can vary significantly among MXene flakes depending on the preparation route and is commonly determined after flake preparation by using X-ray photoelectron spectroscopy (XPS). In this paper, as an alternative approach, we propose the combination of surface-enhanced Raman spectroscopy (SERS) and artificial neural networks (ANN) for the precise and reliable determination of MXene flakes' (Ti3C2Tx) surface chemistry. Ti3C2Tx flakes were independently prepared by three scientific groups and subsequently measured using three different Raman spectrometers, employing resonant excitation wavelengths. Manual analysis of the SERS spectra did not enable accurate determination of the flake surface termination. However, the combined SERS-ANN approach allowed us to determine the surface termination with a high accuracy. The reliability of the method was verified by using a series of independently prepared samples. We also paid special attention to how the results of the SERS-ANN method are affected by the flake stability and differences in the conditions of flake preparation and Raman measurements. This way, we have developed a universal technique that is independent of the above-mentioned parameters, providing the results with accuracy similar to XPS, but enhanced in terms of analysis time and simplicity.
Central Laboratories University of Chemistry and Technology Prague 16628 Czech Republic
Department of Inorganic Chemistry University of Chemistry and Technology Prague 16628 Czech Republic
Department of Power Engineering University of Chemistry and Technology Prague 16628 Czech Republic
Institute of Physics of the Czech Academy of Sciences Prague 18220 Czech Republic
Zobrazit více v PubMed
Baig N.; Kammakakam I.; Falath W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2 (6), 1821–1871. 10.1039/D0MA00807A. DOI
Gao M.-R.; Xu Y.-F.; Jiang J.; Yu S.-H. Nanostructured Metal Chalcogenides: Synthesis, Modification, and Applications in Energy Conversion and Storage Devices. Chem. Soc. Rev. 2013, 42 (7), 2986–3017. 10.1039/c2cs35310e. PubMed DOI
Guo S.; Dong S. Graphene Nanosheet: Synthesis, Molecular Engineering, Thin Film, Hybrids, and Energy and Analytical Applications. Chem. Soc. Rev. 2011, 40 (5), 2644–2672. 10.1039/c0cs00079e. PubMed DOI
Tan C.; Cao X.; Wu X.-J.; He Q.; Yang J.; Zhang X.; Chen J.; Zhao W.; Han S.; Nam G.-H.; et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117 (9), 6225–6331. 10.1021/acs.chemrev.6b00558. PubMed DOI
Mas-Ballesté R.; Gómez-Navarro C.; Gómez-Herrero J.; Zamora F. 2D Materials: To Graphene and Beyond. Nanoscale 2011, 3 (1), 20–30. 10.1039/C0NR00323A. PubMed DOI
Naguib M.; Kurtoglu M.; Presser V.; Lu J.; Niu J.; Heon M.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23 (37), 4248–4253. 10.1002/adma.201102306. PubMed DOI
Naguib M.; Mashtalir O.; Carle J.; Presser V.; Lu J.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6 (2), 1322–1331. 10.1021/nn204153h. PubMed DOI
VahidMohammadi A.; Rosen J.; Gogotsi Y. The World of Two-Dimensional Carbides and Nitrides (MXenes). Science 2021, 372 (6547), eabf158110.1126/science.abf1581. PubMed DOI
Jiang X.; Kuklin A. V.; Baev A.; Ge Y.; Ågren H.; Zhang H.; Prasad P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58. 10.1016/j.physrep.2019.12.006. DOI
Olshtrem A.; Panov I.; Chertopalov S.; Zaruba K.; Vokata B.; Sajdl P.; Lancok J.; Storch J.; Církva V.; Svorcik V.; et al. Chiral Plasmonic Response of 2D Ti3C2Tx Flakes: Realization and Applications. Adv. Funct. Mater. 2023, 33, 2212786.10.1002/adfm.202212786. DOI
Peng J.; Chen X.; Ong W.-J.; Zhao X.; Li N. Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro- and Photocatalysis. Chem. 2019, 5 (1), 18–50. 10.1016/j.chempr.2018.08.037. DOI
Zabelina A.; Zabelin D.; Miliutina E.; Lancok J.; Svorcik V.; Chertopalov S.; Lyutakov O. Surface plasmon-polariton triggering of Ti3C2Tx MXene catalytic activity for hydrogen evolution reaction enhancement. J. Mater. Chem. A 2021, 9 (33), 17770–17779. 10.1039/D1TA04505A. DOI
Sherryna A.; Tahir M. Role of Surface Morphology and Terminating Groups in Titanium Carbide MXenes (Ti3C2Tx) Cocatalysts with Engineering Aspects for Modulating Solar Hydrogen Production: A Critical Review. Chem. Eng. J. 2022, 433, 134573.10.1016/j.cej.2022.134573. DOI
Zubair M.; Ul Hassan M. M.; Mehran M. T.; Baig M. M.; Hussain S.; Shahzad F. 2D MXenes and Their Heterostructures for HER, OER and Overall Water Splitting: A Review. Int. J. Hydrogen Energy 2022, 47 (5), 2794–2818. 10.1016/j.ijhydene.2021.10.248. DOI
Persson P. O. Å.; Rosen J. Current State of the Art on Tailoring the MXene Composition, Structure, and Surface Chemistry. Curr. Opin. Solid State Mater. Sci. 2019, 23 (6), 100774.10.1016/j.cossms.2019.100774. DOI
Lipatov A.; Alhabeb M.; Lukatskaya M. R.; Boson A.; Gogotsi Y.; Sinitskii A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2MXene Flakes. Adv. Electron. Mater. 2016, 2 (12), 1600255.10.1002/aelm.201600255. DOI
Alhabeb M.; Maleski K.; Anasori B.; Lelyukh P.; Clark L.; Sin S.; Gogotsi Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29 (18), 7633–7644. 10.1021/acs.chemmater.7b02847. DOI
Gao G.; O’Mullane A. P.; Du A. 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. ACS Catal. 2017, 7 (1), 494–500. 10.1021/acscatal.6b02754. DOI
Bai S.; Yang M.; Jiang J.; He X.; Zou J.; Xiong Z.; Liao G.; Liu S. Recent Advances of MXenes as Electrocatalysts for Hydrogen Evolution Reaction. npj 2D Mater. Appl. 2021, 5 (1), 78.10.1038/s41699-021-00259-4. DOI
Doo S.; Chae A.; Kim D.; Oh T.; Ko T. Y.; Kim S. J.; Koh D.-Y.; Koo C. M. Mechanism and Kinetics of Oxidation Reaction of Aqueous Ti3C2Tx Suspensions at Different pHs and Temperatures. ACS Appl. Mater. Interfaces 2021, 13 (19), 22855–22865. 10.1021/acsami.1c04663. PubMed DOI
Olshtrem A.; Chertopalov S.; Guselnikova O.; Valiev R. R.; Cieslar M.; Miliutina E.; Elashnikov R.; Fitl P.; Postnikov P.; Lancok J.; et al. Plasmon-Assisted MXene Grafting: Tuning of Surface Termination and Stability Enhancement. 2D Mater. 2021, 8 (4), 045037.10.1088/2053-1583/ac27c0. DOI
Halim J.; Cook K. M.; Naguib M.; Eklund P.; Gogotsi Y.; Rosen J.; Barsoum M. W. X-Ray Photoelectron Spectroscopy of Select Multi-Layered Transition Metal Carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417. 10.1016/j.apsusc.2015.11.089. DOI
Natu V.; Benchakar M.; Canaff C.; Habrioux A.; Célérier S.; Barsoum M. W. A Critical Analysis of the X-Ray Photoelectron Spectra of Ti3C2Tz MXenes. Matter 2021, 4 (4), 1224–1251. 10.1016/j.matt.2021.01.015. DOI
Sarycheva A.; Gogotsi Y. Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32 (8), 3480–3488. 10.1021/acs.chemmater.0c00359. DOI
Yang Y.; Xu B.; Murray J.; Haverstick J.; Chen X.; Tripp R. A.; Zhao Y. Rapid and Quantitative Detection of Respiratory Viruses Using Surface-Enhanced Raman Spectroscopy and Machine Learning. Biosens. Bioelectron. 2022, 217, 114721.10.1016/j.bios.2022.114721. PubMed DOI
Skvortsova A.; Trelin A.; Kriz P.; Elashnikov R.; Vokata B.; Ulbrich P.; Pershina A.; Svorcik V.; Guselnikova O.; Lyutakov O. SERS and Advanced Chemometrics - Utilization of Siamese Neural Network for Picomolar Identification of Beta-Lactam Antibiotics Resistance Gene Fragment. Anal. Chim. Acta 2022, 1192, 339373.10.1016/j.aca.2021.339373. PubMed DOI
Chen Z.; Feng K.; Chen Z.; Zou S.; Shen J.; Li H. Coupling Enhanced SERS Substrates and 1D Dilated Convolutional Neural Network: A New Model to Improve Trace Detection and Identification. Opt. Commun. 2022, 525, 128830.10.1016/j.optcom.2022.128830. DOI
Sil S.; Mukherjee R.; Kumbhar D.; Reghu D.; Shrungar D.; Kumar N. S.; Singh U. K.; Umapathy S. Raman Spectroscopy and Artificial Intelligence Open up Accurate Detection of Pathogens from DNA-Based Sub-Species Level Classification. J. Raman Spectrosc. 2021, 52 (12), 2648–2659. 10.1002/jrs.6115. DOI
Erzina M.; Trelin A.; Guselnikova O.; Skvortsova A.; Strnadova K.; Svorcik V.; Lyutakov O. Quantitative detection of α1-acid glycoprotein (AGP) level in blood plasma using SERS and CNN transfer learning approach. Sens. Actuators, B 2022, 367, 132057.10.1016/j.snb.2022.132057. DOI
Beeram R.; Vendamani V. S.; Soma V. R. Deep Learning Approach to Overcome Signal Fluctuations in SERS for Efficient On-Site Trace Explosives Detection. Spectrochim. Acta, Part A 2023, 289, 122218.10.1016/j.saa.2022.122218. PubMed DOI
Hu T.; Hu M.; Gao B.; Li W.; Wang X. Screening Surface Structure of MXenes by High-Throughput Computation and Vibrational Spectroscopic Confirmation. J. Phys. Chem. C 2018, 122 (32), 18501–18509. 10.1021/acs.jpcc.8b04427. DOI
Hu T.; Hu M.; Li Z.; Zhang H.; Zhang C.; Wang J.; Wang X. Covalency-Dependent Vibrational Dynamics in Two-Dimensional Titanium Carbides. J. Phys. Chem. A 2015, 119 (52), 12977–12984. 10.1021/acs.jpca.5b08626. PubMed DOI
dos Santos D. P.; Sena M. M.; Almeida M. R.; Mazali I. O.; Olivieri A. C.; Villa J. E. L. Unraveling Surface-Enhanced Raman Spectroscopy Results through Chemometrics and Machine Learning: Principles, Progress, and Trends. Anal. Bioanal. Chem. 2023, 415 (18), 3945–3966. 10.1007/s00216-023-04620-y. PubMed DOI PMC
Skvortsova A.; Trelin A.; Sedlar A.; Erzina M.; Travnickova M.; Svobodova L.; Kolska Z.; Siegel J.; Bacakova L.; Svorcik V.; et al. SERS-CNN Approach for Non-Invasive and Non-Destructive Monitoring of Stem Cell Growth on a Universal Substrate through an Analysis of the Cultivation Medium. Sens. Actuators, B 2023, 375, 132812.10.1016/j.snb.2022.132812. DOI
Meza Ramirez C. A.; Greenop M.; Ashton L.; Rehman I. u. Applications of Machine Learning in Spectroscopy. Appl. Spectrosc. Rev. 2021, 56 (8–10), 733–763. 10.1080/05704928.2020.1859525. DOI
Ji K.; Liu P.; Wu C.; Li Q.; Ge Y.; Wen Y.; Xiong J.; Liu X.; He P.; Tang K.; et al. A Deep Learning Strategy for Discrimination and Detection of Multi-Sulfonamides Residues in Aquatic Environments Using Gold Nanoparticles-Decorated Violet Phosphorene SERS Substrates. Sens. Actuators, B 2023, 386, 133736.10.1016/j.snb.2023.133736. DOI
Dina N. E.; Gherman A. M. R.; Brezeştean I.. IoMT-Based SERS Detection as Advanced Diagnostics. In SERS-Based Advanced Diagnostics for Infectious Diseases; IOP Publishing, 2023.10.1088/978-0-7503-5920-7ch10. DOI
Chae Y.; Kim S. J.; Cho S.-Y.; Choi J.; Maleski K.; Lee B.-J.; Jung H.-T.; Gogotsi Y.; Lee Y.; Ahn C. W. An Investigation into the Factors Governing the Oxidation of Two-Dimensional Ti 3 C 2 MXene. Nanoscale 2019, 11 (17), 8387–8393. 10.1039/C9NR00084D. PubMed DOI
Xia F.; Lao J.; Yu R.; Sang X.; Luo J.; Li Y.; Wu J. Ambient Oxidation of Ti 3 C 2 MXene Initialized by Atomic Defects. Nanoscale 2019, 11 (48), 23330–23337. 10.1039/C9NR07236E. PubMed DOI