• This record comes from PubMed

Expression patterns of novel immunotherapy targets in intermediate- and high-grade lung neuroendocrine neoplasms

. 2024 May 02 ; 73 (6) : 114. [epub] 20240502

Language English Country Germany Media electronic

Document type Journal Article, Multicenter Study

Grant support
TKP2021-EGA-33 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Bolyai Research Scholarship Magyar Tudományos Akadémia
FWF I3522 Austrian Science Fund
International Lung Cancer Foundation Young Investigator Grant (2022) International Association for the Study of Lung Cancer
T 1062 Austrian Science Fund FWF - Austria
Semmelweis 250+ Excellence PhD Scholarship Semmelweis Egyetem
FWF No. T 1062-B33 Austrian Science Fund
I 4677 Austrian Science Fund FWF - Austria
I 3522 Austrian Science Fund FWF - Austria
UNKP-20-3 Innovációs és Technológiai Minisztérium
PC2022-II-19/1/2022 Magyar Tudományos Akadémia
I 3977 Austrian Science Fund FWF - Austria
Innovative Interdisciplinary Cancer Research Hochschuljubiläumsstiftung der Stadt Wien

Links

PubMed 38693435
PubMed Central PMC11063022
DOI 10.1007/s00262-024-03704-7
PII: 10.1007/s00262-024-03704-7
Knihovny.cz E-resources

BACKGROUND: Advancements in immunotherapeutic approaches only had a modest impact on the therapy of lung neuroendocrine neoplasms (LNENs). Our multicenter study aimed to investigate the expression patterns of novel immunotherapy targets in intermediate- and high-grade LNENs. METHODS: The expressions of V-domain Ig suppressor of T cell activation (VISTA), OX40L, Glucocorticoid-induced TNF receptor (GITR), and T cell immunoglobulin and mucin domain 3 (TIM3) proteins were measured by immunohistochemistry in surgically resected tumor samples of 26 atypical carcinoid (AC), 49 large cell neuroendocrine lung cancer (LCNEC), and 66 small cell lung cancer (SCLC) patients. Tumor and immune cells were separately scored. RESULTS: Tumor cell TIM3 expression was the highest in ACs (p < 0.001), whereas elevated tumor cell GITR levels were characteristic for both ACs and SCLCs (p < 0.001 and p = 0.011, respectively). OX40L expression of tumor cells was considerably lower in ACs (vs. SCLCs; p < 0.001). Tumor cell VISTA expression was consistently low in LNENs, with no significant differences across histological subtypes. ACs were the least immunogenic tumors concerning immune cell abundance (p < 0.001). Immune cell VISTA and GITR expressions were also significantly lower in these intermediate-grade malignancies than in SCLCs or in LCNECs. Immune cell TIM3 and GITR expressions were associated with borderline prognostic significance in our multivariate model (p = 0.057 and p = 0.071, respectively). CONCLUSIONS: LNEN subtypes have characteristic and widely divergent VISTA, OX40L, GITR, and TIM3 protein expressions. By shedding light on the different expression patterns of these immunotherapy targets, the current multicenter study provides support for the future implementation of novel immunotherapeutic approaches.

Center for Cancer Research Medical University of Vienna Vienna Austria

Department of Clinical Pharmacology National Institute of Oncology Chest and Abdominal Tumors Chemotherapy B Budapest Hungary

Department of Pathology University Hospital Ostrava and Faculty of Medicine University of Ostrava Ostrava Czech Republic

Department of Physics of Complex Systems Eotvos Lorand University Budapest Hungary

Department of Pulmonary Diseases and Tuberculosis University Hospital Ostrava and Faculty of Medicine University of Ostrava Ostrava Czech Republic

Department of Thoracic Surgery Comprehensive Cancer Center Vienna Medical University of Vienna Waehringer Guertel 18 20 1090 Vienna Austria

Department of Thoracic Surgery Semmelweis University and National Institute of Oncology Budapest Hungary

Department of Translational Medicine Lund University Lund Sweden

Diagnostic and Research Institute of Pathology Medical University of Graz Graz Austria

Division of Pulmonology Department of Medicine 2 Medical University of Vienna Vienna Austria

Division of Thoracic and Hyperbaric Surgery Department of Surgery Medical University of Graz Graz Austria

Medical Faculty Institute of Clinical and Molecular Pathology Palacky University Olomouc Olomouc Czech Republic

National Institute of Oncology and National Tumor Biology Laboratory Budapest Hungary

National Koranyi Institute of Pulmonology Budapest Hungary

Surgical Clinic University Hospital Ostrava and Faculty of Medicine University of Ostrava Ostrava Czech Republic

See more in PubMed

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021 doi: 10.1002/ijc.33588. PubMed DOI

Metovic J, Barella M, Bianchi F, et al. Morphologic and molecular classification of lung neuroendocrine neoplasms. Virchows Arch. 2021;478:5–19. doi: 10.1007/s00428-020-03015-z. PubMed DOI PMC

Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022;17:362–387. doi: 10.1016/j.jtho.2021.11.003. PubMed DOI

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660. PubMed DOI

Travis WD, Brambilla E, Nicholson AG, et al. The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–1260. doi: 10.1097/jto.0000000000000630. PubMed DOI

Morandi U, Casali C, Rossi G. Bronchial typical carcinoid tumors. Semin Thorac Cardiovasc Surg. 2006;18:191–198. doi: 10.1053/j.semtcvs.2006.08.005. PubMed DOI

Baudin E, Caplin M, Garcia-Carbonero R, et al. Lung and thymic carcinoids: ESMO clinical practice guidelines for diagnosis, treatment and follow-up(☆) Ann Oncol. 2021;32:439–451. doi: 10.1016/j.annonc.2021.01.003. PubMed DOI

Pusceddu S, Lo Russo G, Macerelli M, et al. Diagnosis and management of typical and atypical lung carcinoids. Crit Rev Oncol Hematol. 2016;100:167–176. doi: 10.1016/j.critrevonc.2016.02.009. PubMed DOI

Randhawa S, Trikalinos N, Patterson GA. Neuroendocrine tumors of the lung. Thorac Surg Clin. 2021;31:469–476. doi: 10.1016/j.thorsurg.2021.05.005. PubMed DOI

Ferrara MG, Stefani A, Simbolo M, et al. Large cell neuro-endocrine carcinoma of the lung: current treatment options and potential future opportunities. Front Oncol. 2021;11:650293. doi: 10.3389/fonc.2021.650293. PubMed DOI PMC

Borczuk AC. Pulmonary neuroendocrine tumors. Surg Pathol Clin. 2020;13(1):35–55. doi: 10.1016/j.path.2019.10.002. PubMed DOI

Megyesfalvi Z, Gay CM, Popper H, et al. Clinical insights into small cell lung cancer: tumor heterogeneity, diagnosis, therapy, and future directions. CA: A Cancer J Clin. 2023;73(6):620–652. doi: 10.3322/caac.21785. PubMed DOI

Lim SM, Hong MH, Kim HR. Immunotherapy for non-small cell lung cancer: current landscape and future perspectives. immune Netw. 2020;20:e10. doi: 10.4110/in.2020.20.e10. PubMed DOI PMC

Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 2022;40:586–597. doi: 10.1200/jco.21.01497. PubMed DOI

Albertelli M, Dotto A, Nista F, Veresani A, Patti L, Gay S, Sciallero S, Boschetti M, Ferone D. Present and future of immunotherapy in neuroendocrine tumors. Rev Endocr Metab Disord. 2021;22:615–636. doi: 10.1007/s11154-021-09647-z. PubMed DOI PMC

Klein O, Kee D, Markman B, et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers. Clin Cancer Res. 2020;26:4454–4459. doi: 10.1158/1078-0432.Ccr-20-0621. PubMed DOI

Di Molfetta S, Feola T, Fanciulli G, Florio T, Colao A, Faggiano A, Nike G. Immune checkpoint blockade in lung carcinoids with aggressive behaviour: one more arrow in our quiver? J Clin Med. 2022 doi: 10.3390/jcm11041019. PubMed DOI PMC

Berghmans T, Dingemans AM, Hendriks LEL, Cadranel J. Immunotherapy for nonsmall cell lung cancer: a new therapeutic algorithm. Eur Respir J. 2020 doi: 10.1183/13993003.01907-2019. PubMed DOI

Pavan A, Attili I, Pasello G, Guarneri V, Conte PF, Bonanno L. Immunotherapy in small-cell lung cancer: from molecular promises to clinical challenges. J Immunother Cancer. 2019;7:205. doi: 10.1186/s40425-019-0690-1. PubMed DOI PMC

Dantoing E, Piton N, Salaün M, Thiberville L, Guisier F. Anti-PD1/PD-L1 immunotherapy for non-small cell lung cancer with actionable oncogenic driver mutations. Int J Mol Sci. 2021 doi: 10.3390/ijms22126288. PubMed DOI PMC

Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10:727–742. PubMed PMC

Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol. 2020;80:106221. doi: 10.1016/j.intimp.2020.106221. PubMed DOI

Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131:58–67. doi: 10.1182/blood-2017-06-741033. PubMed DOI PMC

Ferencz B, Megyesfalvi Z, Csende K, et al. Comparative expression analysis of immune-related markers in surgically resected lung neuroendocrine neoplasms. Lung Cancer. 2023;181:107263. doi: 10.1016/j.lungcan.2023.107263. PubMed DOI

Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol. 2020;13:83. doi: 10.1186/s13045-020-00917-y. PubMed DOI PMC

Mortezaee K, Majidpoor J, Najafi S. VISTA immune regulatory effects in bypassing cancer immunotherapy: updated. Life Sci. 2022;310:121083. doi: 10.1016/j.lfs.2022.121083. PubMed DOI

Tagliamento M, Agostinetto E, Borea R, Brandão M, Poggio F, Addeo A, Lambertini M. VISTA: a promising target for cancer immunotherapy? Immunotargets Ther. 2021;10:185–200. doi: 10.2147/itt.S260429. PubMed DOI PMC

Lu X. OX40 and OX40L interaction in cancer. Curr Med Chem. 2021;28:5659–5673. doi: 10.2174/0929867328666201229123151. PubMed DOI

Redmond WL, Weinberg AD. Targeting OX40 and OX40L for the treatment of autoimmunity and cancer. Crit Rev Immunol. 2007;27:415–436. doi: 10.1615/critrevimmunol.v27.i5.20. PubMed DOI

Chan S, Belmar N, Ho S, et al. An anti-PD-1-GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy. Nat Cancer. 2022;3:337–354. doi: 10.1038/s43018-022-00334-9. PubMed DOI PMC

Hernandez-Guerrero T, Moreno V. GITR Antibodies in cancer: not ready for prime time. Clin Cancer Res. 2022;28:3905–3907. doi: 10.1158/1078-0432.Ccr-22-1489. PubMed DOI

Solinas C, De Silva P, Bron D, Willard-Gallo K, Sangiolo D. Significance of TIM3 expression in cancer: from biology to the clinic. Semin Oncol. 2019;46:372–379. doi: 10.1053/j.seminoncol.2019.08.005. PubMed DOI

Kandel S, Adhikary P, Li G, Cheng K. The TIM3/Gal9 signaling pathway: an emerging target for cancer immunotherapy. Cancer Lett. 2021;510:67–78. doi: 10.1016/j.canlet.2021.04.011. PubMed DOI PMC

Buzzatti G, Dellepiane C, Del Mastro L. New emerging targets in cancer immunotherapy: the role of GITR. ESMO Open. 2020;4:e000738. doi: 10.1136/esmoopen-2020-000738. PubMed DOI PMC

Davar D, Zappasodi R. Targeting GITR in cancer immunotherapy - there is no perfect knowledge. Oncotarget. 2023;14:614–621. doi: 10.18632/oncotarget.28461. PubMed DOI PMC

Herrera-Camacho I, Anaya-Ruiz M, Perez-Santos M, Millán-Pérez Peña L, Bandala C, Landeta G. Cancer immunotherapy using anti-TIM3/PD-1 bispecific antibody: a patent evaluation of EP3356411A1. Expert Opin Ther Pat. 2019;29:587–593. doi: 10.1080/13543776.2019.1637422. PubMed DOI

Martin AS, Molloy M, Ugolkov A, von Roemeling RW, Noelle RJ, Lewis LD, Johnson M, Radvanyi L, Martell RE. VISTA expression and patient selection for immune-based anticancer therapy. Front Immunol. 2023;14:1086102. doi: 10.3389/fimmu.2023.1086102. PubMed DOI PMC

Mlika M, Zendah I, Braham E, El Mezni F. CD56 antibody: old-fashioned or still trendy in endocrine lung tumors. J Immunoassay Immunochem. 2015;36:414–419. doi: 10.1080/15321819.2014.952444. PubMed DOI

Pelosi G, Rindi G, Travis WD, Papotti M. Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice. J Thorac Oncol. 2014;9:273–284. doi: 10.1097/jto.0000000000000092. PubMed DOI

Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753. doi: 10.1016/j.pharmthera.2020.107753. PubMed DOI PMC

Whiteside TL. Immune responses to malignancies. J Allergy Clin Immunol. 2010;125:S272–S283. doi: 10.1016/j.jaci.2009.09.045. PubMed DOI PMC

Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res. 2020;39:89. doi: 10.1186/s13046-020-01586-y. PubMed DOI PMC

Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin. 2020;13:17–33. doi: 10.1016/j.path.2019.11.002. PubMed DOI

Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–1284. doi: 10.1101/gad.314617.118. PubMed DOI PMC

Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20:662–680. doi: 10.1038/s41568-020-0285-7. PubMed DOI

Moonen L, Derks J, Dingemans AM, Speel EJ. Orthopedia homeobox (OTP) in Pulmonary neuroendocrine tumors: the diagnostic value and possible molecular interactions. Cancers (Basel) 2019 doi: 10.3390/cancers11101508. PubMed DOI PMC

Papaxoinis G, Nonaka D, O'Brien C, Sanderson B, Krysiak P, Mansoor W. Prognostic significance of CD44 and Orthopedia homeobox protein (OTP) expression in pulmonary carcinoid tumours. Endocr Pathol. 2017;28:60–70. doi: 10.1007/s12022-016-9459-y. PubMed DOI

Swarts DR, Henfling ME, Van Neste L, et al. CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin Cancer Res. 2013;19:2197–2207. doi: 10.1158/1078-0432.Ccr-12-3078. PubMed DOI

Swarts DR, Scarpa A, Corbo V, et al. MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab. 2014;99:E374–E378. doi: 10.1210/jc.2013-2782. PubMed DOI

Derks JL, Leblay N, Lantuejoul S, Dingemans AC, Speel EM, Fernandez-Cuesta L. New insights into the molecular characteristics of pulmonary carcinoids and large cell neuroendocrine carcinomas, and the impact on their clinical management. J Thorac Oncol. 2018;13:752–766. doi: 10.1016/j.jtho.2018.02.002. PubMed DOI

George J, Walter V, Peifer M, et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun. 2018;9:1048. doi: 10.1038/s41467-018-03099-x. PubMed DOI PMC

Rekhtman N, Pietanza MC, Hellmann MD, et al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin Cancer Res. 2016;22:3618–3629. doi: 10.1158/1078-0432.Ccr-15-2946. PubMed DOI PMC

Rekhtman N. Lung neuroendocrine neoplasms: recent progress and persistent challenges. Mod Pathol. 2022;35:36–50. doi: 10.1038/s41379-021-00943-2. PubMed DOI PMC

Gay CM, Stewart CA, Park EM, et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell. 2021;39:346–60.e7. doi: 10.1016/j.ccell.2020.12.014. PubMed DOI PMC

Rudin CM, Poirier JT, Byers LA, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19:289–297. doi: 10.1038/s41568-019-0133-9. PubMed DOI PMC

Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ, Wang L. VISTA regulates the development of protective antitumor immunity. Cancer Res. 2014;74:1933–1944. doi: 10.1158/0008-5472.Can-13-1506. PubMed DOI PMC

Hendry S, Salgado R, Gevaert T, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 2: tils in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol. 2017;24:311–335. doi: 10.1097/pap.0000000000000161. PubMed DOI PMC

Zong L, Mo S, Sun Z, Lu Z, Yu S, Chen J, Xiang Y. Analysis of the immune checkpoint V-domain Ig-containing suppressor of T-cell activation (VISTA) in endometrial cancer. Mod Pathol. 2022;35:266–273. doi: 10.1038/s41379-021-00901-y. PubMed DOI

Muller S, Victoria Lai W, Adusumilli PS, et al. V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma. Mod Pathol. 2020;33:303–311. doi: 10.1038/s41379-019-0364-z. PubMed DOI PMC

Terenziani R, Zoppi S, Fumarola C, Alfieri R, Bonelli M. Immunotherapeutic approaches in malignant pleural mesothelioma. Cancers (Basel) 2021 doi: 10.3390/cancers13112793. PubMed DOI PMC

Saleh R, Taha RZ, Toor SM, et al. Expression of immune checkpoints and T cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunol Immunother. 2020;69:1989–1999. doi: 10.1007/s00262-020-02593-w. PubMed DOI PMC

Yuan L, Tatineni J, Mahoney KM, Freeman GJ. VISTA: a mediator of quiescence and a promising target in cancer immunotherapy. Trends Immunol. 2021;42:209–227. doi: 10.1016/j.it.2020.12.008. PubMed DOI PMC

Röcken C. Predictive biomarkers in gastric cancer. J Cancer Res Clin Oncol. 2023;149:467–481. doi: 10.1007/s00432-022-04408-0. PubMed DOI PMC

Hung YP. Neuroendocrine tumors of the lung: updates and diagnostic pitfalls. Surg Pathol Clin. 2019;12:1055–1071. doi: 10.1016/j.path.2019.08.012. PubMed DOI

Wang Y, Zhang H, Liu C, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol. 2022;15:111. doi: 10.1186/s13045-022-01325-0. PubMed DOI PMC

Rittig SM, Lutz MS, Clar KL, et al. Controversial role of the immune checkpoint OX40L expression on platelets in breast cancer progression. Front Oncol. 2022;12:917834. doi: 10.3389/fonc.2022.917834. PubMed DOI PMC

Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B. 2020;10:414–433. doi: 10.1016/j.apsb.2019.08.010. PubMed DOI PMC

Porciuncula A, Morgado M, Gupta R, Syrigos K, Meehan R, Zacharek SJ, Frederick JP, Schalper KA. Spatial Mapping and immunomodulatory role of the OX40/OX40L Pathway in human non-small cell lung cancer. Clin Cancer Res. 2021;27:6174–6183. doi: 10.1158/1078-0432.Ccr-21-0987. PubMed DOI PMC

Chen P, Wang H, Zhao L, et al. Immune checkpoints OX40 and OX40L in small-cell lung cancer: predict prognosis and modulate immune microenvironment. Front Oncol. 2021;11:713853. doi: 10.3389/fonc.2021.713853. PubMed DOI PMC

Chen X, Ma H, Mo S, Zhang Y, Lu Z, Yu S, Chen J. Analysis of the OX40/OX40L immunoregulatory axis combined with alternative immune checkpoint molecules in pancreatic ductal adenocarcinoma. Front Immunol. 2022;13:942154. doi: 10.3389/fimmu.2022.942154. PubMed DOI PMC

Nocentini G, Riccardi C. GITR: a modulator of immune response and inflammation. Adv Exp Med Biol. 2009;647:156–173. doi: 10.1007/978-0-387-89520-8_11. PubMed DOI

Zappasodi R, Sirard C, Li Y, et al. Rational design of anti-GITR-based combination immunotherapy. Nat Med. 2019;25:759–766. doi: 10.1038/s41591-019-0420-8. PubMed DOI PMC

Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022;19:37–50. doi: 10.1038/s41571-021-00552-7. PubMed DOI

Ronchetti S, Nocentini G, Petrillo MG, Bianchini R, Sportoletti P, Bastianelli A, Ayroldi EM, Riccardi C. Glucocorticoid-Induced TNFR family related gene (GITR) enhances dendritic cell activity. Immunol Lett. 2011;135:24–33. doi: 10.1016/j.imlet.2010.09.008. PubMed DOI

Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11:39. doi: 10.1186/s13045-018-0582-8. PubMed DOI PMC

Nocentini G, Ronchetti S, Cuzzocrea S, Riccardi C. GITR/GITRL: more than an effector T cell co-stimulatory system. Eur J Immunol. 2007;37:1165–1169. doi: 10.1002/eji.200636933. PubMed DOI

Riccardi C, Ronchetti S, Nocentini G. Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opin Ther Targets. 2018;22:783–797. doi: 10.1080/14728222.2018.1512588. PubMed DOI

Zhao L, Cheng S, Fan L, Zhang B, Xu S. TIM-3: an update on immunotherapy. Int Immunopharmacol. 2021;99:107933. doi: 10.1016/j.intimp.2021.107933. PubMed DOI

Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020;20:173–185. doi: 10.1038/s41577-019-0224-6. PubMed DOI PMC

Grillo F, Bruzzone M, Pigozzi S, Prosapio S, Migliora P, Fiocca R, Mastracci L. Immunohistochemistry on old archival paraffin blocks: is there an expiry date? J Clin Pathol. 2017;70:988–993. doi: 10.1136/jclinpath-2017-204387. PubMed DOI

Kokkat TJ, Patel MS, McGarvey D, LiVolsi VA, Baloch ZW. Archived formalin-fixed paraffin-embedded (FFPE) blocks: a valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv Biobank. 2013;11:101–106. doi: 10.1089/bio.2012.0052. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...