Expression patterns of novel immunotherapy targets in intermediate- and high-grade lung neuroendocrine neoplasms
Language English Country Germany Media electronic
Document type Journal Article, Multicenter Study
Grant support
TKP2021-EGA-33
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Bolyai Research Scholarship
Magyar Tudományos Akadémia
FWF I3522
Austrian Science Fund
International Lung Cancer Foundation Young Investigator Grant (2022)
International Association for the Study of Lung Cancer
T 1062
Austrian Science Fund FWF - Austria
Semmelweis 250+ Excellence PhD Scholarship
Semmelweis Egyetem
FWF No. T 1062-B33
Austrian Science Fund
I 4677
Austrian Science Fund FWF - Austria
I 3522
Austrian Science Fund FWF - Austria
UNKP-20-3
Innovációs és Technológiai Minisztérium
PC2022-II-19/1/2022
Magyar Tudományos Akadémia
I 3977
Austrian Science Fund FWF - Austria
Innovative Interdisciplinary Cancer Research
Hochschuljubiläumsstiftung der Stadt Wien
PubMed
38693435
PubMed Central
PMC11063022
DOI
10.1007/s00262-024-03704-7
PII: 10.1007/s00262-024-03704-7
Knihovny.cz E-resources
- Keywords
- Immune phenotype, Immunohistochemistry, Immunotherapy target, Lung neuroendocrine neoplasm,
- MeSH
- B7 Antigens metabolism MeSH
- Hepatitis A Virus Cellular Receptor 2 * metabolism MeSH
- Adult MeSH
- Glucocorticoid-Induced TNFR-Related Protein * metabolism MeSH
- Immunotherapy * methods MeSH
- Middle Aged MeSH
- Humans MeSH
- OX40 Ligand metabolism MeSH
- Biomarkers, Tumor * metabolism MeSH
- Lung Neoplasms * immunology pathology therapy metabolism MeSH
- Neuroendocrine Tumors * immunology metabolism therapy pathology MeSH
- Prognosis MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Neoplasm Grading MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Names of Substances
- B7 Antigens MeSH
- Hepatitis A Virus Cellular Receptor 2 * MeSH
- Glucocorticoid-Induced TNFR-Related Protein * MeSH
- HAVCR2 protein, human MeSH Browser
- OX40 Ligand MeSH
- Biomarkers, Tumor * MeSH
- TNFRSF18 protein, human MeSH Browser
- VSIR protein, human MeSH Browser
BACKGROUND: Advancements in immunotherapeutic approaches only had a modest impact on the therapy of lung neuroendocrine neoplasms (LNENs). Our multicenter study aimed to investigate the expression patterns of novel immunotherapy targets in intermediate- and high-grade LNENs. METHODS: The expressions of V-domain Ig suppressor of T cell activation (VISTA), OX40L, Glucocorticoid-induced TNF receptor (GITR), and T cell immunoglobulin and mucin domain 3 (TIM3) proteins were measured by immunohistochemistry in surgically resected tumor samples of 26 atypical carcinoid (AC), 49 large cell neuroendocrine lung cancer (LCNEC), and 66 small cell lung cancer (SCLC) patients. Tumor and immune cells were separately scored. RESULTS: Tumor cell TIM3 expression was the highest in ACs (p < 0.001), whereas elevated tumor cell GITR levels were characteristic for both ACs and SCLCs (p < 0.001 and p = 0.011, respectively). OX40L expression of tumor cells was considerably lower in ACs (vs. SCLCs; p < 0.001). Tumor cell VISTA expression was consistently low in LNENs, with no significant differences across histological subtypes. ACs were the least immunogenic tumors concerning immune cell abundance (p < 0.001). Immune cell VISTA and GITR expressions were also significantly lower in these intermediate-grade malignancies than in SCLCs or in LCNECs. Immune cell TIM3 and GITR expressions were associated with borderline prognostic significance in our multivariate model (p = 0.057 and p = 0.071, respectively). CONCLUSIONS: LNEN subtypes have characteristic and widely divergent VISTA, OX40L, GITR, and TIM3 protein expressions. By shedding light on the different expression patterns of these immunotherapy targets, the current multicenter study provides support for the future implementation of novel immunotherapeutic approaches.
Center for Cancer Research Medical University of Vienna Vienna Austria
Department of Physics of Complex Systems Eotvos Lorand University Budapest Hungary
Department of Translational Medicine Lund University Lund Sweden
Diagnostic and Research Institute of Pathology Medical University of Graz Graz Austria
Division of Pulmonology Department of Medicine 2 Medical University of Vienna Vienna Austria
National Institute of Oncology and National Tumor Biology Laboratory Budapest Hungary
See more in PubMed
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021 doi: 10.1002/ijc.33588. PubMed DOI
Metovic J, Barella M, Bianchi F, et al. Morphologic and molecular classification of lung neuroendocrine neoplasms. Virchows Arch. 2021;478:5–19. doi: 10.1007/s00428-020-03015-z. PubMed DOI PMC
Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022;17:362–387. doi: 10.1016/j.jtho.2021.11.003. PubMed DOI
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660. PubMed DOI
Travis WD, Brambilla E, Nicholson AG, et al. The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–1260. doi: 10.1097/jto.0000000000000630. PubMed DOI
Morandi U, Casali C, Rossi G. Bronchial typical carcinoid tumors. Semin Thorac Cardiovasc Surg. 2006;18:191–198. doi: 10.1053/j.semtcvs.2006.08.005. PubMed DOI
Baudin E, Caplin M, Garcia-Carbonero R, et al. Lung and thymic carcinoids: ESMO clinical practice guidelines for diagnosis, treatment and follow-up(☆) Ann Oncol. 2021;32:439–451. doi: 10.1016/j.annonc.2021.01.003. PubMed DOI
Pusceddu S, Lo Russo G, Macerelli M, et al. Diagnosis and management of typical and atypical lung carcinoids. Crit Rev Oncol Hematol. 2016;100:167–176. doi: 10.1016/j.critrevonc.2016.02.009. PubMed DOI
Randhawa S, Trikalinos N, Patterson GA. Neuroendocrine tumors of the lung. Thorac Surg Clin. 2021;31:469–476. doi: 10.1016/j.thorsurg.2021.05.005. PubMed DOI
Ferrara MG, Stefani A, Simbolo M, et al. Large cell neuro-endocrine carcinoma of the lung: current treatment options and potential future opportunities. Front Oncol. 2021;11:650293. doi: 10.3389/fonc.2021.650293. PubMed DOI PMC
Borczuk AC. Pulmonary neuroendocrine tumors. Surg Pathol Clin. 2020;13(1):35–55. doi: 10.1016/j.path.2019.10.002. PubMed DOI
Megyesfalvi Z, Gay CM, Popper H, et al. Clinical insights into small cell lung cancer: tumor heterogeneity, diagnosis, therapy, and future directions. CA: A Cancer J Clin. 2023;73(6):620–652. doi: 10.3322/caac.21785. PubMed DOI
Lim SM, Hong MH, Kim HR. Immunotherapy for non-small cell lung cancer: current landscape and future perspectives. immune Netw. 2020;20:e10. doi: 10.4110/in.2020.20.e10. PubMed DOI PMC
Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 2022;40:586–597. doi: 10.1200/jco.21.01497. PubMed DOI
Albertelli M, Dotto A, Nista F, Veresani A, Patti L, Gay S, Sciallero S, Boschetti M, Ferone D. Present and future of immunotherapy in neuroendocrine tumors. Rev Endocr Metab Disord. 2021;22:615–636. doi: 10.1007/s11154-021-09647-z. PubMed DOI PMC
Klein O, Kee D, Markman B, et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers. Clin Cancer Res. 2020;26:4454–4459. doi: 10.1158/1078-0432.Ccr-20-0621. PubMed DOI
Di Molfetta S, Feola T, Fanciulli G, Florio T, Colao A, Faggiano A, Nike G. Immune checkpoint blockade in lung carcinoids with aggressive behaviour: one more arrow in our quiver? J Clin Med. 2022 doi: 10.3390/jcm11041019. PubMed DOI PMC
Berghmans T, Dingemans AM, Hendriks LEL, Cadranel J. Immunotherapy for nonsmall cell lung cancer: a new therapeutic algorithm. Eur Respir J. 2020 doi: 10.1183/13993003.01907-2019. PubMed DOI
Pavan A, Attili I, Pasello G, Guarneri V, Conte PF, Bonanno L. Immunotherapy in small-cell lung cancer: from molecular promises to clinical challenges. J Immunother Cancer. 2019;7:205. doi: 10.1186/s40425-019-0690-1. PubMed DOI PMC
Dantoing E, Piton N, Salaün M, Thiberville L, Guisier F. Anti-PD1/PD-L1 immunotherapy for non-small cell lung cancer with actionable oncogenic driver mutations. Int J Mol Sci. 2021 doi: 10.3390/ijms22126288. PubMed DOI PMC
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10:727–742. PubMed PMC
Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol. 2020;80:106221. doi: 10.1016/j.intimp.2020.106221. PubMed DOI
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131:58–67. doi: 10.1182/blood-2017-06-741033. PubMed DOI PMC
Ferencz B, Megyesfalvi Z, Csende K, et al. Comparative expression analysis of immune-related markers in surgically resected lung neuroendocrine neoplasms. Lung Cancer. 2023;181:107263. doi: 10.1016/j.lungcan.2023.107263. PubMed DOI
Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol. 2020;13:83. doi: 10.1186/s13045-020-00917-y. PubMed DOI PMC
Mortezaee K, Majidpoor J, Najafi S. VISTA immune regulatory effects in bypassing cancer immunotherapy: updated. Life Sci. 2022;310:121083. doi: 10.1016/j.lfs.2022.121083. PubMed DOI
Tagliamento M, Agostinetto E, Borea R, Brandão M, Poggio F, Addeo A, Lambertini M. VISTA: a promising target for cancer immunotherapy? Immunotargets Ther. 2021;10:185–200. doi: 10.2147/itt.S260429. PubMed DOI PMC
Lu X. OX40 and OX40L interaction in cancer. Curr Med Chem. 2021;28:5659–5673. doi: 10.2174/0929867328666201229123151. PubMed DOI
Redmond WL, Weinberg AD. Targeting OX40 and OX40L for the treatment of autoimmunity and cancer. Crit Rev Immunol. 2007;27:415–436. doi: 10.1615/critrevimmunol.v27.i5.20. PubMed DOI
Chan S, Belmar N, Ho S, et al. An anti-PD-1-GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy. Nat Cancer. 2022;3:337–354. doi: 10.1038/s43018-022-00334-9. PubMed DOI PMC
Hernandez-Guerrero T, Moreno V. GITR Antibodies in cancer: not ready for prime time. Clin Cancer Res. 2022;28:3905–3907. doi: 10.1158/1078-0432.Ccr-22-1489. PubMed DOI
Solinas C, De Silva P, Bron D, Willard-Gallo K, Sangiolo D. Significance of TIM3 expression in cancer: from biology to the clinic. Semin Oncol. 2019;46:372–379. doi: 10.1053/j.seminoncol.2019.08.005. PubMed DOI
Kandel S, Adhikary P, Li G, Cheng K. The TIM3/Gal9 signaling pathway: an emerging target for cancer immunotherapy. Cancer Lett. 2021;510:67–78. doi: 10.1016/j.canlet.2021.04.011. PubMed DOI PMC
Buzzatti G, Dellepiane C, Del Mastro L. New emerging targets in cancer immunotherapy: the role of GITR. ESMO Open. 2020;4:e000738. doi: 10.1136/esmoopen-2020-000738. PubMed DOI PMC
Davar D, Zappasodi R. Targeting GITR in cancer immunotherapy - there is no perfect knowledge. Oncotarget. 2023;14:614–621. doi: 10.18632/oncotarget.28461. PubMed DOI PMC
Herrera-Camacho I, Anaya-Ruiz M, Perez-Santos M, Millán-Pérez Peña L, Bandala C, Landeta G. Cancer immunotherapy using anti-TIM3/PD-1 bispecific antibody: a patent evaluation of EP3356411A1. Expert Opin Ther Pat. 2019;29:587–593. doi: 10.1080/13543776.2019.1637422. PubMed DOI
Martin AS, Molloy M, Ugolkov A, von Roemeling RW, Noelle RJ, Lewis LD, Johnson M, Radvanyi L, Martell RE. VISTA expression and patient selection for immune-based anticancer therapy. Front Immunol. 2023;14:1086102. doi: 10.3389/fimmu.2023.1086102. PubMed DOI PMC
Mlika M, Zendah I, Braham E, El Mezni F. CD56 antibody: old-fashioned or still trendy in endocrine lung tumors. J Immunoassay Immunochem. 2015;36:414–419. doi: 10.1080/15321819.2014.952444. PubMed DOI
Pelosi G, Rindi G, Travis WD, Papotti M. Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice. J Thorac Oncol. 2014;9:273–284. doi: 10.1097/jto.0000000000000092. PubMed DOI
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753. doi: 10.1016/j.pharmthera.2020.107753. PubMed DOI PMC
Whiteside TL. Immune responses to malignancies. J Allergy Clin Immunol. 2010;125:S272–S283. doi: 10.1016/j.jaci.2009.09.045. PubMed DOI PMC
Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res. 2020;39:89. doi: 10.1186/s13046-020-01586-y. PubMed DOI PMC
Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin. 2020;13:17–33. doi: 10.1016/j.path.2019.11.002. PubMed DOI
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–1284. doi: 10.1101/gad.314617.118. PubMed DOI PMC
Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20:662–680. doi: 10.1038/s41568-020-0285-7. PubMed DOI
Moonen L, Derks J, Dingemans AM, Speel EJ. Orthopedia homeobox (OTP) in Pulmonary neuroendocrine tumors: the diagnostic value and possible molecular interactions. Cancers (Basel) 2019 doi: 10.3390/cancers11101508. PubMed DOI PMC
Papaxoinis G, Nonaka D, O'Brien C, Sanderson B, Krysiak P, Mansoor W. Prognostic significance of CD44 and Orthopedia homeobox protein (OTP) expression in pulmonary carcinoid tumours. Endocr Pathol. 2017;28:60–70. doi: 10.1007/s12022-016-9459-y. PubMed DOI
Swarts DR, Henfling ME, Van Neste L, et al. CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin Cancer Res. 2013;19:2197–2207. doi: 10.1158/1078-0432.Ccr-12-3078. PubMed DOI
Swarts DR, Scarpa A, Corbo V, et al. MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab. 2014;99:E374–E378. doi: 10.1210/jc.2013-2782. PubMed DOI
Derks JL, Leblay N, Lantuejoul S, Dingemans AC, Speel EM, Fernandez-Cuesta L. New insights into the molecular characteristics of pulmonary carcinoids and large cell neuroendocrine carcinomas, and the impact on their clinical management. J Thorac Oncol. 2018;13:752–766. doi: 10.1016/j.jtho.2018.02.002. PubMed DOI
George J, Walter V, Peifer M, et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun. 2018;9:1048. doi: 10.1038/s41467-018-03099-x. PubMed DOI PMC
Rekhtman N, Pietanza MC, Hellmann MD, et al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin Cancer Res. 2016;22:3618–3629. doi: 10.1158/1078-0432.Ccr-15-2946. PubMed DOI PMC
Rekhtman N. Lung neuroendocrine neoplasms: recent progress and persistent challenges. Mod Pathol. 2022;35:36–50. doi: 10.1038/s41379-021-00943-2. PubMed DOI PMC
Gay CM, Stewart CA, Park EM, et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell. 2021;39:346–60.e7. doi: 10.1016/j.ccell.2020.12.014. PubMed DOI PMC
Rudin CM, Poirier JT, Byers LA, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19:289–297. doi: 10.1038/s41568-019-0133-9. PubMed DOI PMC
Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ, Wang L. VISTA regulates the development of protective antitumor immunity. Cancer Res. 2014;74:1933–1944. doi: 10.1158/0008-5472.Can-13-1506. PubMed DOI PMC
Hendry S, Salgado R, Gevaert T, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 2: tils in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol. 2017;24:311–335. doi: 10.1097/pap.0000000000000161. PubMed DOI PMC
Zong L, Mo S, Sun Z, Lu Z, Yu S, Chen J, Xiang Y. Analysis of the immune checkpoint V-domain Ig-containing suppressor of T-cell activation (VISTA) in endometrial cancer. Mod Pathol. 2022;35:266–273. doi: 10.1038/s41379-021-00901-y. PubMed DOI
Muller S, Victoria Lai W, Adusumilli PS, et al. V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma. Mod Pathol. 2020;33:303–311. doi: 10.1038/s41379-019-0364-z. PubMed DOI PMC
Terenziani R, Zoppi S, Fumarola C, Alfieri R, Bonelli M. Immunotherapeutic approaches in malignant pleural mesothelioma. Cancers (Basel) 2021 doi: 10.3390/cancers13112793. PubMed DOI PMC
Saleh R, Taha RZ, Toor SM, et al. Expression of immune checkpoints and T cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunol Immunother. 2020;69:1989–1999. doi: 10.1007/s00262-020-02593-w. PubMed DOI PMC
Yuan L, Tatineni J, Mahoney KM, Freeman GJ. VISTA: a mediator of quiescence and a promising target in cancer immunotherapy. Trends Immunol. 2021;42:209–227. doi: 10.1016/j.it.2020.12.008. PubMed DOI PMC
Röcken C. Predictive biomarkers in gastric cancer. J Cancer Res Clin Oncol. 2023;149:467–481. doi: 10.1007/s00432-022-04408-0. PubMed DOI PMC
Hung YP. Neuroendocrine tumors of the lung: updates and diagnostic pitfalls. Surg Pathol Clin. 2019;12:1055–1071. doi: 10.1016/j.path.2019.08.012. PubMed DOI
Wang Y, Zhang H, Liu C, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol. 2022;15:111. doi: 10.1186/s13045-022-01325-0. PubMed DOI PMC
Rittig SM, Lutz MS, Clar KL, et al. Controversial role of the immune checkpoint OX40L expression on platelets in breast cancer progression. Front Oncol. 2022;12:917834. doi: 10.3389/fonc.2022.917834. PubMed DOI PMC
Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B. 2020;10:414–433. doi: 10.1016/j.apsb.2019.08.010. PubMed DOI PMC
Porciuncula A, Morgado M, Gupta R, Syrigos K, Meehan R, Zacharek SJ, Frederick JP, Schalper KA. Spatial Mapping and immunomodulatory role of the OX40/OX40L Pathway in human non-small cell lung cancer. Clin Cancer Res. 2021;27:6174–6183. doi: 10.1158/1078-0432.Ccr-21-0987. PubMed DOI PMC
Chen P, Wang H, Zhao L, et al. Immune checkpoints OX40 and OX40L in small-cell lung cancer: predict prognosis and modulate immune microenvironment. Front Oncol. 2021;11:713853. doi: 10.3389/fonc.2021.713853. PubMed DOI PMC
Chen X, Ma H, Mo S, Zhang Y, Lu Z, Yu S, Chen J. Analysis of the OX40/OX40L immunoregulatory axis combined with alternative immune checkpoint molecules in pancreatic ductal adenocarcinoma. Front Immunol. 2022;13:942154. doi: 10.3389/fimmu.2022.942154. PubMed DOI PMC
Nocentini G, Riccardi C. GITR: a modulator of immune response and inflammation. Adv Exp Med Biol. 2009;647:156–173. doi: 10.1007/978-0-387-89520-8_11. PubMed DOI
Zappasodi R, Sirard C, Li Y, et al. Rational design of anti-GITR-based combination immunotherapy. Nat Med. 2019;25:759–766. doi: 10.1038/s41591-019-0420-8. PubMed DOI PMC
Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022;19:37–50. doi: 10.1038/s41571-021-00552-7. PubMed DOI
Ronchetti S, Nocentini G, Petrillo MG, Bianchini R, Sportoletti P, Bastianelli A, Ayroldi EM, Riccardi C. Glucocorticoid-Induced TNFR family related gene (GITR) enhances dendritic cell activity. Immunol Lett. 2011;135:24–33. doi: 10.1016/j.imlet.2010.09.008. PubMed DOI
Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11:39. doi: 10.1186/s13045-018-0582-8. PubMed DOI PMC
Nocentini G, Ronchetti S, Cuzzocrea S, Riccardi C. GITR/GITRL: more than an effector T cell co-stimulatory system. Eur J Immunol. 2007;37:1165–1169. doi: 10.1002/eji.200636933. PubMed DOI
Riccardi C, Ronchetti S, Nocentini G. Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opin Ther Targets. 2018;22:783–797. doi: 10.1080/14728222.2018.1512588. PubMed DOI
Zhao L, Cheng S, Fan L, Zhang B, Xu S. TIM-3: an update on immunotherapy. Int Immunopharmacol. 2021;99:107933. doi: 10.1016/j.intimp.2021.107933. PubMed DOI
Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020;20:173–185. doi: 10.1038/s41577-019-0224-6. PubMed DOI PMC
Grillo F, Bruzzone M, Pigozzi S, Prosapio S, Migliora P, Fiocca R, Mastracci L. Immunohistochemistry on old archival paraffin blocks: is there an expiry date? J Clin Pathol. 2017;70:988–993. doi: 10.1136/jclinpath-2017-204387. PubMed DOI
Kokkat TJ, Patel MS, McGarvey D, LiVolsi VA, Baloch ZW. Archived formalin-fixed paraffin-embedded (FFPE) blocks: a valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv Biobank. 2013;11:101–106. doi: 10.1089/bio.2012.0052. PubMed DOI PMC