Protective Effects of Resveratrol Against Airway Hyperreactivity, Oxidative Stress, and Lung Inflammation in a Rat Pup Model of Bronchopulmonary Dysplasia
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38710061
PubMed Central
PMC11081184
DOI
10.33549/physiolres.935239
PII: 935239
Knihovny.cz E-zdroje
- MeSH
- antioxidancia farmakologie MeSH
- bronchiální hyperreaktivita prevence a kontrola metabolismus patofyziologie chemicky indukované MeSH
- bronchopulmonální dysplazie * prevence a kontrola metabolismus MeSH
- hyperoxie komplikace metabolismus MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech * MeSH
- novorozená zvířata * MeSH
- oxidační stres * účinky léků MeSH
- pneumonie * prevence a kontrola metabolismus chemicky indukované MeSH
- potkani Sprague-Dawley MeSH
- resveratrol * farmakologie MeSH
- stilbeny farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- resveratrol * MeSH
- stilbeny MeSH
Oxygen therapy provides an important treatment for preterm and low-birth-weight neonates, however, it has been shown that prolonged exposure to high levels of oxygen (hyperoxia) is one of the factors contributing to the development of bronchopulmonary dysplasia (BPD) by inducing lung injury and airway hyperreactivity. There is no effective therapy against the adverse effects of hyperoxia. Therefore, this study was undertaken to test the hypothesis that natural phytoalexin resveratrol will overcome hyperoxia-induced airway hyperreactivity, oxidative stress, and lung inflammation. Newborn rats were exposed to hyperoxia (fraction of inspired oxygen - FiO2>95 % O2) or ambient air (AA) for seven days. Resveratrol was supplemented either in vivo (30 mg·kg-1·day-1) by intraperitoneal administration or in vitro to the tracheal preparations in an organ bath (100 mikroM). Contractile and relaxant responses were studied in tracheal smooth muscle (TSM) using the in vitro organ bath system. To explain the involvement of nitric oxide in the mechanisms of the protective effect of resveratrol against hyperoxia, a nitric oxide synthase inhibitor - Nomega-nitro-L-arginine methyl ester (L-NAME), was administered in some sets of experiments. The superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and the tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) levels in the lungs were determined. Resveratrol significantly reduced contraction and restored the impaired relaxation of hyperoxia-exposed TSM (p<0.001). L-NAME reduced the inhibitory effect of resveratrol on TSM contractility, as well as its promotion relaxant effect (p<0.01). Resveratrol preserved the SOD and GPx activities and decreased the expression of TNF-alpha and IL-1beta in hyperoxic animals. The findings of this study demonstrate the protective effect of resveratrol against hyperoxia-induced airway hyperreactivity and lung damage and suggest that resveratrol might serve as a therapy to prevent the adverse effects of neonatal hyperoxia. Keywords: Bronchopulmonary dysplasia, Hyperoxia, Airway hyperreactivity, Resveratrol, Pro-inflammatory cytokines.
Zobrazit více v PubMed
Jobe AH. The new bronchopulmonary dysplasia. Curr Opin Pediatr. 2011;23:167–72. doi: 10.1097/MOP.0b013e3283423e6b. PubMed DOI PMC
Shahzad T, Radajewski S, Chao C-M, Bellusci S, Ehrhardt H. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr. 2016;3:23. PubMed PMC
Jobe AH, Bancalari E. Bronchopulmonary Dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9. PubMed
Beqiraj-Zeqiraj Q, Thaçi Q, Sahiti F, Kovač Z, Raffay TM, Sopi RB. Rho-kinase inhibitors protect against neonatal hyperoxia-induced airway hyperreactivity in a rat pup model: Role of prostaglandin F(2α) Pediatr Pulmonol. 2022;57:1229–37. doi: 10.1002/ppul.25848. PubMed DOI
Sopi RB, Haxhiu MA, Martin RJ, Dreshaj IA, Kamath S, Zaidi SI. Disruption of NO-cGMP signaling by neonatal hyperoxia impairs relaxation of lung parenchyma. Am J Physiol Lung Cell Mol Physiol. 2007;293:L1029–36. doi: 10.1152/ajplung.00182.2007. PubMed DOI
Raffay TM, Dylag AM, Di Fiore JM, Smith LA, Einisman HJ, Li Y, Lakner MM, et al. S-Nitrosoglutathione Attenuates Airway Hyperresponsiveness in Murine Bronchopulmonary Dysplasia. Mol Pharmacol. 2016;90:418–26. doi: 10.1124/mol.116.104125. PubMed DOI PMC
Çifci A, Tayman C, Yakut HI, Halil H, Çakir E, Çakir U, Aydemir S. Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turk J Med Sci. 2018;48:892–900. doi: 10.3906/sag-1803-223. PubMed DOI
Northway WH., Jr Bronchopulmonary dysplasia: thirty-three years later. Pediatr Pulmonol. 2001;23:5–7. doi: 10.1002/ppul.1950262304. PubMed DOI
Ali NKM, Jafri A, Sopi RB, Prakash YS, Martin RJ, Zaidi SIA. Role of Arginase in Impairing Relaxation of Lung Parenchyma of Hyperoxia-Exposed Neonatal Rats. Neonatology. 2012;101:106–15. PubMed PMC
Pitkänen OM, Hallman M. Evidence for increased oxidative stress in preterm infants eventually developing chronic lung disease. Semin Neonato. 1998;3:199–205. doi: 10.1016/S1084-2756(98)80005-5. DOI
Balany J, Bhandari V. Understanding the Impact of Infection, Inflammation, and Their Persistence in the Pathogenesis of Bronchopulmonary Dysplasia. Front Med. 2015;2:90. doi: 10.3389/fmed.2015.00090. PubMed DOI PMC
Tsukagoshi H, Sakamoto T, Xu W, Barnes PJ, Chung KF. Effect of interleukin-1 beta on airway hyperresponsiveness and inflammation in sensitized and nonsensitized Brown-Norway rats. J Allergy Clin Immunol. 1994;93:464–9. doi: 10.1016/0091-6749(94)90355-7. PubMed DOI
Stamenkovska M, Thaçi Q, Hadzi-Petrushev N, Angelovski M, Bogdanov J, Reçica S, Kryeziu I, et al. Curcumin analogs (B2BrBC and C66) supplementation attenuates airway hyperreactivity and promote airway relaxation in neonatal rats exposed to hyperoxia. Physiol Rep. 2020;8:e14555. doi: 10.14814/phy2.14555. PubMed DOI PMC
Comhair SA, Bhathena PR, Farver C, Thunnissen FB, Erzurum SC. Extracellular glutathione peroxidase induction in asthmatic lungs: evidence for redox regulation of expression in human airway epithelial cells. Faseb J. 2001;15:70–8. doi: 10.1096/fj.00-0085com. PubMed DOI
Bulger EM, Maier RV. Antioxidants in critical illness. Arch Surg. 2001;136:1201–7. doi: 10.1001/archsurg.136.10.1201. PubMed DOI
Morton RL, Das KC, Guo XL, Iklé DN, White CW. Effect of oxygen on lung superoxide dismutase activities in premature baboons with bronchopulmonary dysplasia. Am J Physiol. 1999;276:L64–74. doi: 10.1152/ajplung.1999.276.1.L64. PubMed DOI
Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci. 1995;92:6264–8. doi: 10.1073/pnas.92.14.6264. PubMed DOI PMC
Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. Jama. 2015;314:1039–51. doi: 10.1001/jama.2015.10244. PubMed DOI PMC
Davidson LM, Berkelhamer SK. Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes. J Clin Med. 2017;6:4. doi: 10.3390/jcm6010004. PubMed DOI PMC
Harikumar KB, Aggarwal BB. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle. 2008;7:1020–35. doi: 10.4161/cc.7.8.5740. PubMed DOI
de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans. 2007;35:1156–60. doi: 10.1042/BST0351156. PubMed DOI
Pandey KB, Rizvi SI. Anti-oxidative action of resveratrol: Implications for human health. Arab J Chem. 2011;4:293–8. doi: 10.1016/j.arabjc.2010.06.049. DOI
Ganesan K, Xu B. A critical review on polyphenols and health benefits of black soybeans. Nutrients. 2017;9:455. doi: 10.3390/nu9050455. PubMed DOI PMC
Royce SG, Dang W, Yuan G, Tran J, El Osta A, Karagiannis TC, Tang MLK. Resveratrol has protective effects against airway remodeling and airway hyperreactivity in a murine model of allergic airways disease. Pathobiol Aging Age Relat Dis. 2011;1:7134. doi: 10.3402/PBA.v1i0.7134. PubMed DOI PMC
Sopi RB, Zaidi SI, Mladenov M, Sahiti H, Istrefi Z, Gjorgoski I, Lajçi A, et al. L-citrulline supplementation reverses the impaired airway relaxation in neonatal rats exposed to hyperoxia. Respir Res. 2012;13:68. doi: 10.1186/1465-9921-13-68. PubMed DOI PMC
Mladenov M, Gokik M, Hadzi-Petrushev N, Gjorgoski I, Jankulovski N. The relationship between antioxidant enzymes and lipid peroxidation in senescent rat erythrocytes. Physiol Res. 2015;64:891–6. doi: 10.33549/physiolres.932890. PubMed DOI
Pan L, Fu JH, Xue XD, Xu W, Zhou P, Wei B. Melatonin protects against oxidative damage in a neonatal rat model of bronchopulmonary dysplasia. World J Pediatr. 2009;5:216–21. doi: 10.1007/s12519-009-0041-2. PubMed DOI
Buczynski BW, Maduekwe ET, O'Reilly MA. The role of hyperoxia in the pathogenesis of experimental BPD. Semin Perinatol. 2013;37:69–78. doi: 10.1053/j.semperi.2013.01.002. PubMed DOI PMC
Landry JS, Menzies D. Occurrence and severity of bronchopulmonary dysplasia and respiratory distress syndrome after a preterm birth. Paediatr Child Health. 2011;16:399–403. doi: 10.1093/pch/16.7.399. PubMed DOI PMC
Davis JM, Dickerson B, Metlay L, Penney DP. Differential effects of oxygen and barotrauma on lung injury in the neonatal piglet. Pediatr Pulmonol. 1991;10:157–63. doi: 10.1002/ppul.1950100305. PubMed DOI
Kondrikov D, Caldwell RB, Dong Z, Su Y. Reactive oxygen species-dependent RhoA activation mediates collagen synthesis in hyperoxic lung fibrosis. Free Radic Biol Med. 2011;50:1689–98. doi: 10.1016/j.freeradbiomed.2011.03.020. PubMed DOI PMC
Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H, Jang M, et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem. 1998;273:21875–82. doi: 10.1074/jbc.273.34.21875. PubMed DOI
Sopi RB, Martin RJ, Haxhiu MA, Dreshaj IA, Yao Q, Jafri A, Zaidi SI. Role of brain - derived neurotrophic factor in hyperoxia-induced enhancement of contractility and impairment of relaxation in lung parenchyma. Am J Physiol Lung Cell Mol Physiol. 2008;295:L348–L355. doi: 10.1152/ajplung.00067.2008. PubMed DOI PMC
Mhanna MJ, Haxhiu MA, Jaber MA, Walenga RW, Chang CH, Liu S, Martin RJ. Hyperoxia impairs airway relaxation in immature rats via a cAMP-mediated mechanism. J Appl Physiol. 2004;96:1854–60. doi: 10.1152/japplphysiol.01178.2002. PubMed DOI
Shen MY, Hsiao G, Liu CL, Fong TH, Lin KH, Chou DS, Sheu JR. Inhibitory mechanisms of resveratrol in platelet activation: pivotal roles of p38 MAPK and NO/cyclic GMP. Br J Haematol. 2007;139:475–85. doi: 10.1111/j.1365-2141.2007.06788.x. PubMed DOI
Nagaoka T, Hein TW, Yoshida A, Kuo L. Resveratrol, a component of red wine, elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels. Invest Ophthalmol Vis Sci. 2007;48:4232–9. https://doi.org/10.1167/iovs.07-0094, https://doi.org/10.1167/iovs.06-0856. PubMed DOI
Naderali EK, Doyle PJ, Williams G. Resveratrol induces vasorelaxation of mesenteric and uterine arteries from female guinea-pigs. Clin Sci. 2000;98:537–43. doi: 10.1042/cs0980537. PubMed DOI
Chen CK, Pace-Asciak CR. Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol. 1996;27:363–6. doi: 10.1016/0306-3623(95)02001-2. PubMed DOI
Leikert JF, RäThel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation. 2002;106:1614–7. doi: 10.1161/01.CIR.0000034445.31543.43. PubMed DOI
Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, Förstermann U. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 2002;106:1652–8. doi: 10.1161/01.CIR.0000029925.18593.5C. PubMed DOI
Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148:421–33. doi: 10.1016/j.cell.2012.01.017. PubMed DOI PMC
Perrone S, Tataranno ML, Negro S, Longini M, Marzocchi B, Proietti F, Iacoponi F, et al. Early identification of the risk for free radical-related diseases in preterm newborns. Early Hum Dev. 2010;86:241–4. doi: 10.1016/j.earlhumdev.2010.03.008. PubMed DOI
Elliott PJ, Jirousek M. Sirtuins: novel targets for metabolic disease. Curr Opin Investig Drugs. 2008;9:371–8. PubMed
Xu W, Zhao Y, Zhang B, Xu B, Yang Y, Wang Y, Liu C. Resveratrol attenuates hyperoxia-induced oxidative stress, inflammation and fibrosis and suppresses Wnt/β-catenin signalling in lungs of neonatal rats. Clin Exp Pharmacol Physiol. 2015;42:1075–83. doi: 10.1111/1440-1681.12459. PubMed DOI
Özdemir ÖM, Gözkeser E, Bir F, Yenisey Ç. The effects of resveratrol on hyperoxia-induced lung injury in neonatal rats. Pediatr Neonatol. 2014;55:352–7. doi: 10.1016/j.pedneo.2013.11.004. PubMed DOI