Screening of Astec® CHIRALDEX™ G-PN and LIPODEX™ D gas chromatography columns for enantioseparation of amphetamine derivatives
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
RO-0010-00-2425
CEEPUS Network
PubMed
38736271
DOI
10.1002/chir.23676
Knihovny.cz E-zdroje
- Klíčová slova
- GC, MS, NPS, benzofurans, benzofurys, chiral, cyclodextrin, designer drugs, novel psychoactive substances,
- MeSH
- amfetaminy * chemie izolace a purifikace MeSH
- chromatografie plynová metody MeSH
- cyklodextriny chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- stereoizomerie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amfetaminy * MeSH
- cyklodextriny MeSH
Among different substance classes, New Psychoactive Substances (NPS) comprise chiral amphetamines for stimulant and empathic effects. There is little knowledge in terms of clinical studies about possibly different effects of the two enantiomers of novel amphetamine derivatives. For this reason, there is a big demand for enantioseparation method development of this new substance class. Regarding gas chromatography, cyclodextrins proved to be effective for enantioseparation of NPS. In our attempt, an Astec® Chiraldex™ G-PN column containing 2,6-di-O-pentyl-3-propionyl-γ-cyclodextrin and a Lipodex™ D column containing heptakis-(2,6-di-O-pentyl-O-acetyl)-β-cyclodextrin as chiral selector served as stationary phases in a Shimadzu GCMS-QP2010 SE system. Because of the special coating, maximum temperature is limited to 200 °C isothermal or 220 °C in programmed mode. To ensure detection, trifluoroacetic anhydride (TFAA) was used to increase sample volatility.1 As a result, 35 amphetamines were tested as their TFAA-derivatives. A screening method with a temperature gradient from 140 °C to 200 °C at a heating ramp of 1 °C per minute and final time of 5 min, showed baseline separation for seven and partial separations for 16 trifluoro acetylated amphetamines using the Chiraldex™ G-PN column. Six baseline and nine partial separations were observed with the Lipodex™ D column, respectively.
Zobrazit více v PubMed
European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2023: Trends and Developments ‐ Chapter: New psychoactive substances – the current situation in Europe. https://www.emcdda.europa.eu/publications/european-drug-report/2023_en (Access: 24.11.2023).
Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol. 2020;94(4):1085‐1133. doi:10.1007/s00204‐020‐02693‐7
UNODC. 2014 Global Synthetic Drugs Assessment.
Monte AP, Marona‐Lewicka D, Cozzi NV, Nichols DE. Synthesis and pharmacological examination of benzofuran, indan, and tetralin analogs of 3,4‐(methylenedioxy)amphetamine. J Med Chem. 1993;36(23):3700‐3706. doi:10.1021/jm00075a027
Miliano C, Margiani G, Fattore L, De Luca M. Sales and advertising channels of new psychoactive substances (NPS): internet, social networks, and smartphone apps. Brain Sci. 2018;8(7):123. doi:10.3390/brainsci8070123
Neue‐Psychoaktive‐Substanzen‐Gesetz, NPSG. (Nationalrat Österreich, 2012).
Suchtmittelgesetz ‐ SMG. (Nationalrat Österreich, 1997).
Neue‐Psychoaktive‐Stoffe‐Gesetz (NpSG). (Bundestag Deutschland, 2016).
Smith RC, Davis JM. Comparative effects of d‐amphetamine, l‐amphetamine and methylphenidate on mood in man. Psychopharmacology (Berl). 1977;53(1):1‐12. doi:10.1007/BF00426687
Zhang YY, Li L, Ma AD, Zhou ZZ. Research Progress on chiral separation methods and toxic effects of methamphetamine enantiomers. Fa Yi Xue Za Zhi. 2019;35(3):337‐343. doi:10.12116/j.issn.1004‐5619.2019.03.015
Nishimura T, Takahata K, Kosugi Y, Tanabe T, Muraoka S. Psychomotor effect differences between l‐methamphetamine and d‐methamphetamine are independent of murine plasma and brain pharmacokinetics profiles. J Neural Transm. 2017;124(5):519‐523. doi:10.1007/s00702‐017‐1694‐y
European Monitoring Centre for Drugs and Drug Addiction and Europol. EU Drug Market: Methamphetamine — In‐depth analysis. https://www.emcdda.europa.eu/publications/eu-drug-markets/methamphetamine_en 2022 (Access: 24.11.2023).
UNODC. 2020 Global Synthetic Drug Assessment ‐ Regional Overview Europe. https://www.unodc.org/unodc/en/scientists/2020-global-synthetic-drugs-assessment-regional-overviews.html (Access: 24.11.2023).
Weiß JA, Pertl C, Schmid MG. Investigation of two seized crystal meth labs in Austria – parameters and chirality aspects of methamphetamine low scale synthesis. ARC J Forens Sci. 2018;3(1):3. doi:10.20431/2456‐0049.0301001
European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2023: Trends and Developments ‐ Chapter: Synthetic stimulants – the current situation in Europe. https://www.emcdda.europa.eu/publications/european-drug-report/2023_en (Access: 24.11.2023).
Petruželka B, Barták M. The identification of precursor regulation impact on the methamphetamine market and public health indicators in the Czech Republic: time series structural break analysis. Int J Environ Res Public Health. 2020;17(21):7840. doi:10.3390/ijerph17217840
Qian HL, Xu ST, Yan XP. Recent advances in separation and analysis of chiral compounds. Anal Chem. 2023;95(1):304‐318. doi:10.1021/acs.analchem.2c04371
Schmid MG, Hägele JS. Separation of enantiomers and positional isomers of novel psychoactive substances in solid samples by chromatographic and electrophoretic techniques – a selective review. J Chromatogr a. 2020;1624:461256. doi:10.1016/j.chroma.2020.461256
Scriba GKE, Konjaria M, Krait S. Cyclodextrins. In: Cass QB, Tiritan ME, Batista JM, Barreiro JC, eds. Chiral separations and Stereochemical elucidation. Wiley; 2023:273‐323. doi:10.1002/9781119802280.ch8
Betzenbichler G, Huber L, Kräh S, Morkos M, Siegle A, Trapp O. Chiral stationary phases and applications in gas chromatography. Chirality. 2022;34(5):732‐759. doi:10.1002/chir.23427
Liu H, Wu Z, Chen J, Wang J, Qiu H. Recent advances in chiral liquid chromatography stationary phases for pharmaceutical analysis. J Chromatogr a. 2023;1708:464367. doi:10.1016/j.chroma.2023.464367
Bui CV, Rosenau T, Hettegger H. Polysaccharide‐ and β‐Cyclodextrin‐based chiral selectors for enantiomer resolution: recent developments and applications. Molecules. 2021;26(14):4322. doi:10.3390/molecules26144322
Ao Q, Zhao H, Tong T, Peng Y, He Z. Enantioseparation of basic drugs by reverse phase high‐performance liquid chromatography system using carboxymethyl‐β‐cyclodextrin as chiral mobile phase additive. Chirality. 2022;34(8):1128‐1139. doi:10.1002/chir.23470
Taschwer M, Seidl Y, Mohr S, Schmid MG. Chiral separation of cathinone and amphetamine derivatives by HPLC/UV using sulfated ß‐Cyclodextrin as chiral Mobile phase additive. Chirality. 2014;26(8):411‐418. doi:10.1002/chir.22341
Chankvetadze B, Scriba GKE. Cyclodextrins as chiral selectors in capillary electrophoresis: recent trends in mechanistic studies. TrAC Trends Anal Chem. 2023;160:116987. doi:10.1016/j.trac.2023.116987
Burrai L, Nieddu M, Pirisi MA, Carta A, Briguglio I, Boatto G. Enantiomeric separation of 13 new amphetamine‐like designer drugs by capillary electrophoresis, using modified‐β‐Cyclodextrins. Chirality. 2013;25(10):617‐621. doi:10.1002/chir.22185
Ramseier A, Caslavska J, Thormann W. Stereoselective screening for and confirmation of urinary enantiomers of amphetamine, methamphetamine, designer drugs, methadone and selected metabolites by capillary electrophoresis. Electrophoresis. 1999;20(13):2726‐2738. doi:10.1002/(SICI)1522‐2683(19990901)20:13<2726::AID‐ELPS2726>3.0.CO;2‐6
Bishop SC, McCord BR, Gratz SR, Loeliger JR, Witkowski MR. Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector. J Forensic Sci. 2005;50(2):326‐335. doi:10.1520/JFS2004239
Li L, Lurie IS. Regioisomeric and enantiomeric analyses of 24 designer cathinones and phenethylamines using ultra high performance liquid chromatography and capillary electrophoresis with added cyclodextrins. Forensic Sci Int. 2015;254:148‐157. doi:10.1016/j.forsciint.2015.06.026
Huang YS, Liu JT, Lin LC, Lin CH. Chiral separation of 3,4‐methylenedioxymeth‐ amphetamine and related compounds in clandestine tablets and urine samples by capillary electrophoresis/fluorescence spectroscopy. Electrophoresis. 2003;24(6):1097‐1104. doi:10.1002/elps.200390128
Hägele JS, Hubner EM, Schmid MG. Determination of the chiral status of different novel psychoactive substance classes by capillary electrophoresis and β‐cyclodextrin derivatives. Chirality. 2020;32(9):1191‐1207. doi:10.1002/chir.23268
Taschwer M, Hofer MG, Schmid MG. Enantioseparation of benzofurys and other novel psychoactive compounds by CE and sulfobutylether β‐cyclodextrin as chiral selector added to the BGE. Electrophoresis. 2014;35(19):2793‐2799. doi:10.1002/elps.201400164
Hubner EM, Steinkellner P, Schmid MG. Comparative studies on enantioseparation of new psychoactive substances using cyclodextrin‐assisted capillary electrophoresis with UV detection. J Pharm Biopharm Res. 2022;3(1):187‐205. doi:10.25082/JPBR.2021.01.004
Hägele JS, Hubner EM, Schmid MG. Chiral separation of cathinone derivatives using β‐cyclodextrin‐assisted capillary electrophoresis–comparison of four different β‐cyclodextrin derivatives used as chiral selectors. Electrophoresis. 2019;40(14):1787‐1794. doi:10.1002/elps.201900085
Kraemer T, Roditis SK, Peters FT, Maurer HH. Amphetamine concentrations in human urine following single‐dose Administration of the Calcium Antagonist Prenylamine‐‐Studies Using Fluorescence Polarization Immunoassay (FPIA) and GC‐MS. J Anal Toxicol. 2003;27(2):68‐73. doi:10.1093/jat/27.2.68
Drake SJ, Morrison C, Smith F. Simultaneous chiral separation of methylamphetamine and common precursors using gas chromatography/mass spectrometry. Chirality. 2011;23(8):593‐601. doi:10.1002/chir.20977
Płotka JM, Simeonov V, Morrison C, Biziuk M, Namieśnik J. Capillary gas chromatography using a γ‐cyclodextrin for enantiomeric separation of methylamphetamine, its precursors and chloro intermediates after optimization of the derivatization reaction. J Chromatogr a. 2014;1347:146‐156. doi:10.1016/j.chroma.2014.04.062
Cody JT. Chapter 3 Amphetamines. In: Bogusz MJ, ed. Handbook of analytical separations. Elsevier; 2008:127‐174. doi:10.1016/S1567‐7192(06)06003‐7