• This record comes from PubMed

Testing the hypothesis that solvent exchange limits the rates of calcite growth and dissolution

. 2024 May 10 ; 14 (22) : 15743-15754. [epub] 20240514

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

It is established that the rates of solvent exchange at interfaces correlate with the rates of a number of mineral reactions, including growth, dissolution and ion sorption. To test if solvent exchange is limiting these rates, quasi-elastic neutron scattering (QENS) is used here to benchmark classical molecular dynamics (CMD) simulations of water bound to nanoparticulate calcite. Four distributions of solvent exchanges are found with residence times of 8.9 ps for water bound to calcium sites, 14 ps for that bound to carbonate sites and 16.7 and 85.1 ps for two bound waters in a shared calcium-carbonate conformation. By comparing rates and activation energies, it is found that solvent exchange limits reaction rates neither for growth nor dissolution, likely due to the necessity to form intermediate states during ion sorption. However, solvent exchange forms the ceiling for reaction rates and yields insight into more complex reaction pathways.

See more in PubMed

Board, O. S., E. National Academies of Sciences, and Medicine, Negative Emissions Technologies and Reliable Sequestration: a Research Agenda ,2019 PubMed

Casey W. H. Ligand-and oxygen-isotope-exchange pathways of geochemical interest. Environ. Chem. 2015;12(1):1–19.

Pokrovsky O. S. et al., Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins. Chem. Geol. 2009;265(1–2):20–32.

Casey W. H. On the relative dissolution rates of some oxide and orthosilicate minerals. J. Colloid Interface Sci. 1991;146(2):586–589.

Casey W. H. Westrich H. R. Control of dissolution rates of orthosilicate minerals by divalent metal–oxygen bonds. Nature. 1992;355(6356):157–159.

Hachiya K. et al., Static and kinetic studies of adsorption-desorption of metal ions on a .gamma.-alumina surface. 1. Static study of adsorption-desorption. J. Phys. Chem. 1984;88(1):23–27.

Eigen M. and Wilkins R. G., The Kinetics and Mechanism of Formation of Metal Complexes, ACS Publications, 1965

Eigen M. Relaxationsspektren Chemischer Umwandlungen (Metallkomplexe Und Protolytische Reaktionen in Wassriger Losung) Z. Elektrochem. 1960;64(1):115–123.

Nielsen A. E. Electrolyte Crystal-Growth Mechanisms. J. Cryst. Growth. 1984;67(2):289–310.

Wang H.-W. et al., Solution and interface structure and dynamics in geochemistry: Gateway to link elementary processes to mineral nucleation and growth. Cryst. Growth Des. 2022;22(1):853–870.

Teixeira J. et al., Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Phys. Rev. A. 1985;31(3):1913. PubMed

Salmon P. The dynamics of water molecules in ionic solution. I. The application of quasi-elastic neutron scattering to the study of translational diffusive proton motion. J. Phys. C: Solid State Phys. 1987;20(11):1573.

Helm L. Merbach A. E. Water exchange on metal ions: experiments and simulations. Coord. Chem. Rev. 1999;187:151–181.

Bracco J. N. Gooijer Y. Higgins S. R. Hydrothermal atomic force microscopy observations of barite step growth rates as a function of the aqueous barium-to-sulfate ratio. Geochim. Cosmochim. Acta. 2016;183:1–13.

Petrucci S., Ionic Interactions: from Dilute Solution to Fused Salts, Academic Press, 1971, p. 424

Enderby J. E. The Structure and Dynamics of Ionic-Solutions. Inst. Phys. Conf. Ser. 1983;(64):271–276.

Hewish N. A. Enderby J. E. Howells W. S. The Dynamics of Water-Molecules in Ionic Solution. J. Phys. C: Solid State Phys. 1983;16(10):1777–1791.

Richens D. T. Ligand substitution reactions at inorganic centers. Chem. Rev. 2005;105(6):1961–2002. PubMed

Casey W. H. Swaddle T. W. Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Rev. Geophys. 2003;41(2):1008.

Schwenk C. F. Loeffler H. H. Rode B. M. Dynamics of the solvation process of Ca2+ in water. Chem. Phys. Lett. 2001;349(1–2):99–103.

Naor M. M. Van Nostrand K. Dellago C. Car-Parrinello molecular dynamics simulation of the calcium ion in liquid water. Chem. Phys. Lett. 2003;369(1–2):159–164.

Di Tommaso D. de Leeuw N. H. First Principles Simulations of the Structural and Dynamical Properties of Hydrated Metal Ions Me2+ and Solvated Metal Carbonates (Me = Ca, Mg, and Sr) Cryst. Growth Des. 2010;10(10):4292–4302.

Di Tommaso D. et al., Modelling the effects of salt solutions on the hydration of calcium ions. Phys. Chem. Chem. Phys. 2014;16(17):7772–7785. PubMed

Koskamp J. A. et al., Reconsidering Calcium Dehydration as the Rate-Determining Step in Calcium Mineral Growth. J. Phys. Chem. C. 2019;123(44):26895–26903. PubMed PMC

Koneshan S. et al., Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 degrees C. J. Phys. Chem. B. 1998;102(21):4193–4204.

Guardia E. et al., Molecular dynamics simulation of Mg2+ and Ca2+ ions in water. J. Solution Chem. 1999;28(10):1113–1126.

Kerisit S. Parker S. C. Free energy of adsorption of water and metal ions on the {1014} calcite surface. J. Am. Chem. Soc. 2004;126(32):10152–10161. PubMed

Cooke D. J. Elliott J. A. Atomistic simulations of calcite nanoparticles and their interaction with water. J. Chem. Phys. 2007;127(10):104706. PubMed

Larentzos J. P. Criscenti L. J. A Molecular Dynamics Study of Alkaline Earth Metal-Chloride Complexation in Aqueous Solution. J. Phys. Chem. B. 2008;112(45):14243–14250. PubMed

De La Pierre M. Raiteri P. Gale J. D. Structure and Dynamics of Water at Step Edges on the Calcite {10(1)over-bar4} Surface. Cryst. Growth Des. 2016;16(10):5907–5914.

Lee Y. Thirumalai D. Hyeon C. Ultrasensitivity of Water Exchange Kinetics to the Size of Metal Ion. J. Am. Chem. Soc. 2017;139(36):12334–12337. PubMed

Morse J. W. Arvidson R. S. Luttge A. Calcium carbonate formation and dissolution. Chem. Rev. 2007;107(2):342–381. PubMed

Millero F. J. The marine inorganic carbon cycle. Chem. Rev. 2007;107(2):308–341. PubMed

von Strandmann P. A. E. P. et al., Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nat. Commun. 2019;10:1983. PubMed PMC

Mamontov E. Herwig K. W. A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS. Rev. Sci. Instrum. 2011;82(8):085109. PubMed

Ramirez-Cuesta A. et al., ICE-MAN the Integrated Computational Environment for Modeling and Analysis for Neutrons at ORNL. EPJ Web Conf. 2022;272:01013.

Mamontov E. et al., Simple analytical model for fitting QENS data from liquids. Phys. B. 2019;566:50–54.

Mamontov E. Diffusion in confinement as a microscopic relaxation mechanism in glass-forming liquids. Chem. Phys. Lett. 2012;530:55–60.

Mamontov E. et al., Hydration level dependence of the microscopic dynamics of water adsorbed in ultramicroporous carbon. Carbon. 2017;111:705–712.

Wolthers M. Charlet L. Van Cappellen P. The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model. Am. J. Sci. 2008;308(8):905–941.

Thompson A. P. et al., LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022:271.

Martinez L. et al., PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009;30(13):2157–2164. PubMed

Raiteri P. Demichelis R. Gale J. D. Thermodynamically Consistent Force Field for Molecular Dynamics Simulations of Alkaline-Earth Carbonates and Their Aqueous Speciation. J. Phys. Chem. C. 2015;119(43):24447–24458.

Wu Y. J. Tepper H. L. Voth G. A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys. 2006;124(2):024503. PubMed

Stack A. G. et al., Precise determination of water exchanges on a mineral surface. Phys. Chem. Chem. Phys. 2016;18(41):28819–28828. PubMed

Rustad J. R. Stack A. G. Molecular dynamics calculation of the activation volume for water exchange on Li. J. Am. Chem. Soc. 2006;128(46):14778–14779. PubMed

Stack A. G. Rustad J. R. Structure and dynamics of water on aqueous barium ion and the {001} barite surface. J. Phys. Chem. C. 2007;111(44):16387–16391.

Hermansson K. Wojcik M. Water exchange around Li+ and Na+ in LiCl(aq) and NaCl(aq) from MD simulations. J. Phys. Chem. B. 1998;102(31):6089–6097.

Mamontov E. et al., Suppression of the dynamic transition in surface water at low hydration levels: A study of water on rutile. Phys. Rev. E. 2009;79(5):051504. PubMed

Biriukov D. et al., The “good,” the “bad,” and the “hidden” in neutron scattering and molecular dynamics of ionic aqueous solutions. J. Chem. Phys. 2022;156(19):194505. PubMed

de Leeuw N. H. Parker S. C. Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach. J. Phys. Chem. B. 1998;102(16):2914–2922.

Fenter P. et al., Is the Calcite-Water Interface Understood? Direct Comparisons of Molecular Dynamics Simulations with Specular X-ray Reflectivity Data. J. Phys. Chem. C. 2013;117(10):5028–5042.

Rampal N. et al., Local molecular environment drives speciation and reactivity of ion complexes in concentrated salt solution. J. Mol. Liq. 2021:116898.

Wang H. W. et al., Countercations Control Local Specific Bonding Interactions and Nucleation Mechanisms in Concentrated Water-in-Salt Solutions. J. Phys. Chem. Lett. 2019;10(12):3318–3325. PubMed

Wang H. W. et al., Decoding Oxyanion Aqueous Solvation Structure: A Potassium Nitrate Example at Saturation. J. Phys. Chem. B. 2018;122(30):7584–7589. PubMed

Semrouni D. et al., Resolving local configurational contributions to X-ray and neutron radial distribution functions within solutions of concentrated electrolytes - a case study of concentrated NaOH. Phys. Chem. Chem. Phys. 2019;21(13):6828–6838. PubMed

Kobayashi M. Tanaka H. Possible Link of the V-Shaped Phase Diagram to the Glass-Forming Ability and Fragility in a Water-Salt Mixture. Phys. Rev. Lett. 2011;106(12):125703. PubMed

Kubicki J. D. et al., A new hypothesis for the dissolution mechanism of silicates. J. Phys. Chem. C. 2012;116(33):17479–17491.

Jensen A. C. et al., Mobility of hydrous species in amorphous calcium/magnesium carbonates. Phys. Chem. Chem. Phys. 2018;20(29):19682–19688. PubMed

Pokrovsky O. Schott J. Surface chemistry and dissolution kinetics of divalent metal carbonates. Environ. Sci. Technol. 2002;36(3):426–432. PubMed

Plummer L. Wigley T. Parkhurst D. The kinetics of calcite dissolution in CO 2-water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO 2. Am. J. Sci. 1978;278(2):179–216.

Xu M. et al., Dissolution kinetics of calcite at 50–70 C: an atomic force microscopic study under near-equilibrium conditions. Geochim. Cosmochim. Acta. 2010;74(15):4285–4297.

Wasylenki L. E. Dove P. M. De Yoreo J. J. Effects of temperature and transport conditions on calcite growth in the presence of Mg2+: Implications for paleothermometry. Geochim. Cosmochim. Acta. 2005;69(17):4227–4236.

Kazmierczak T. Tomson M. Nancollas G. Crystal growth of calcium carbonate. A controlled composition kinetic study. J. Phys. Chem. 1982;86(1):103–107.

De La Pierre M. et al., Uncovering the atomistic mechanism for calcite step growth. Angew. Chem., Int. Ed. 2017;56(29):8464–8467. PubMed

Brečević L. Nielsen A. E. Solubility of amorphous calcium carbonate. J. Cryst. Growth. 1989;98(3):504–510.

Rodriguez-Navarro C. et al., Formation of amorphous calcium carbonate and its transformation into mesostructured calcite. CrystEngComm. 2015;17(1):58–72.

Stack A. G. Grantham M. C. Growth rate of calcite steps as a function of aqueous calcium-to-carbonate ratio: independent attachment and detachment of calcium and carbonate ions. Cryst. Growth Des. 2010;10(3):1409–1413.

Stack A. G. Next generation models of carbonate mineral growth and dissolution. Greenhouse Gases: Sci. Technol. 2014;4(3):278–288.

Bracco J. N. Stack A. G. Steefel C. I. Upscaling calcite growth rates from the mesoscale to the macroscale. Environ. Sci. Technol. 2013;47(13):7555–7562. PubMed

Nielsen L. C. DePaolo D. J. De Yoreo J. J. Self-consistent ion-by-ion growth model for kinetic isotopic fractionation during calcite precipitation. Geochim. Cosmochim. Acta. 2012;86:166–181.

Stack A. G. Raiteri P. Gale J. D. Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories. J. Am. Chem. Soc. 2012;134(1):11–14. PubMed

Rustad J. R. Casey W. H. Metastable structures and isotope exchange reactions in polyoxometalate ions provide a molecular view of oxide dissolution. Nat. Mater. 2012;11(3):223–226. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...