Rhizobacterial community and growth-promotion trait characteristics of Zea mays L. inoculated with Pseudomonas fluorescens UM270 in three different soils
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38748205
DOI
10.1007/s12223-024-01171-2
PII: 10.1007/s12223-024-01171-2
Knihovny.cz E-zdroje
- Klíčová slova
- Bioinoculant, Maize, Plant growth-promoting Rhizobacteria, Plant rhizobiome,
- MeSH
- Bacteria klasifikace genetika izolace a purifikace růst a vývoj MeSH
- biodiverzita MeSH
- biomasa MeSH
- fylogeneze MeSH
- kořeny rostlin * mikrobiologie růst a vývoj MeSH
- kukuřice setá * mikrobiologie růst a vývoj MeSH
- Pseudomonas fluorescens * genetika růst a vývoj fyziologie MeSH
- půda * chemie MeSH
- půdní mikrobiologie * MeSH
- rhizosféra * MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda * MeSH
- RNA ribozomální 16S MeSH
There is an increasing demand for bioinoculants based on plant growth-promoting rhizobacteria (PGPR) for use in agricultural ecosystems. However, there are still concerns and limited data on their reproducibility in different soil types and their effects on endemic rhizosphere communities. Therefore, this study explored the effects of inoculating the PGPR, Pseudomonas fluorescens strain UM270, on maize growth (Zea mays L.) and its associated rhizosphere bacteriome by sequencing the 16S ribosomal genes under greenhouse conditions. The results showed that inoculation with PGPR P. fluorescens UM270 improved shoot and root dry weights, chlorophyll concentration, and total biomass in the three soil types evaluated (clay, sandy-loam, and loam) compared to those of the controls. Bacterial community analysis of the three soil types revealed that maize plants inoculated with the UM270 strain showed a significant increase in Proteobacteria and Acidobacteria populations, whereas Actinobacteria and Bacteroidetes decreased. Shannon, Pielou, and Faith alpha-biodiversity indices did not reveal significant differences between treatments. Beta diversity revealed a bacterial community differential structure in each soil type, with some variation among treatments. Finally, some bacterial groups were found to co-occur and co-exclude with respect to UM270 inoculation. Considered together, these results show that PGPR P. fluorescens UM270 increases maize plant growth and has an important effect on the resident rhizobacterial communities of each soil type, making it a potential agricultural biofertilizer.
Zobrazit více v PubMed
Ambrosini A, de Souza R, Passaglia LMP (2016) Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400:193–207. https://doi.org/10.1007/s11104-015-2727-7 DOI
Antoniou A, Tsolakidou MD, Stringlis IA, Pantelides IS (2017) Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.02022
Barka EA, Vatsa P, Sanchez L et al (2016) Correction for Barka et al., Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43. https://doi.org/10.1128/mmbr.00044-16 PubMed DOI
Besset-Manzoni Y, Rieusset L, Joly P et al (2018) Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Pollut Res 25:29953–29970. https://doi.org/10.1007/s11356-017-1152-2 DOI
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9 PubMed DOI PMC
Breedt G, Labuschagne N, Coutinho TA (2017) Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Ann Appl Biol 171:229–236. https://doi.org/10.1111/aab.12366 DOI
Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine Actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek 87:65–79. https://doi.org/10.1007/s10482-004-6562-8 PubMed DOI
Castulo-Rubio DY, Alejandre-Ramírez NA, Orozco-Mosqueda MC et al (2015) Volatile organic compounds produced by the Rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul 34:611–623. https://doi.org/10.1007/s00344-015-9495-8 DOI
Coniglio A, Larama G, Molina R et al (2022) Modulation of maize rhizosphere microbiota composition by inoculation with Azospirillum argentinense Az39 (formerly A. brasilense Az39). J Soil Sci Plant Nutr 22:3553–3567. https://doi.org/10.1007/s42729-022-00909-6 DOI
Dedysh SN, Sinninghe Damsté JS (2018) Acidobacteria. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd, pp 1–10
Di Salvo LP, Cellucci GC, Carlino ME, García de Salamone IE (2018) Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Appl Soil Ecol 126:113–120. https://doi.org/10.1016/j.apsoil.2018.02.010 DOI
Dias MP, Bastos MS, Xavier VB et al (2017) Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol Biochem 118:479–493. https://doi.org/10.1016/j.plaphy.2017.07.017 PubMed DOI
dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC (2020) Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst 4:1–15. https://doi.org/10.3389/fsufs.2020.00136 DOI
dos Santos IB, de Pereira AP, A, de Souza AJ et al (2022) Selection and characterization of Burkholderia spp. for their plant-growth promoting effects and influence on maize seed germination. Front Soil Sci 1:1–10. https://doi.org/10.3389/fsoil.2021.805094 DOI
Dube JP, Valverde A, Steyn JM, Cowan DA, Van der Waals JE (2019) Differences in bacterial diversity, composition and function due to long-term agriculture in soils in the eastern free state of South Africa. Diversity 11:61. https://doi.org/10.3390/d11040061 DOI
Egamberdieva D, Jabborova D, Berg G (2016) Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405:35–45. https://doi.org/10.1007/s11104-015-2661-8 DOI
Erenstein O, Jaleta M, Sonder K et al (2022) Global maize production, consumption and trade: trends and R&D implications. Food Secur 14:1295–1319. https://doi.org/10.1007/s12571-022-01288-7 DOI
Ferrarezi JA, de Carvalho-Estrada P, A, Batista BD et al (2022) Effects of inoculation with plant growth-promoting rhizobacteria from the Brazilian Amazon on the bacterial community associated with maize in field. Appl Soil Ecol 170
Gonzalez-Pimentel JL, Dominguez-Moñino I, Jurado V et al (2022) The rare Actinobacterium Crossiella sp. is a potential source of new bioactive compounds with activity against bacteria and fungi. Microorganisms 10:1575. https://doi.org/10.3390/microorganisms10081575
He D, Wan W (2022) Distribution of culturable phosphate-solubilizing bacteria in soil aggregates and their potential for phosphorus acquisition. Microbiology Spectrum 10:e00290-e322. https://doi.org/10.1128/spectrum.00290-22 PubMed DOI PMC
Heo AY, Koo YM, Choi HW (2022) Biological control activity of plant growth promoting rhizobacteria Burkholderia contaminans AY001 against tomato Fusarium wilt and bacterial speck diseases. Biology 11:619. https://doi.org/10.3390/biology11040619 PubMed DOI PMC
Hernández-Fernández G, Galán B, Carmona M et al (2022) Transcriptional response of the xerotolerant Arthrobacter sp. Helios strain to PEG-induced drought stress. Front Microbiol 13:1–20. https://doi.org/10.3389/fmicb.2022.1009068 DOI
Hernández-León R, Rojas-Solís D, Contreras-Pérez M et al (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92. https://doi.org/10.1016/j.biocontrol.2014.11.011 DOI
Jiang Z, Shao Q, Chu Y et al (2023) Mitigation of atrazine-induced oxidative stress on soybean seedlings after co-inoculation with atrazine-degrading bacterium Arthrobacter sp. DNS10 and inorganic phosphorus-solubilizing bacterium Enterobacter sp. P1. Environ Sci Pollut Res 30:30048–30061. https://doi.org/10.1007/s11356-022-24070-w DOI
Jiménez JA, Novinscak A, Filion M (2020) Inoculation with the plant-growth-promoting Rhizobacterium Pseudomonas fluorescens LBUM677 impacts the rhizosphere microbiome of three oilseed crops. Front Microbiol 11:1–15. https://doi.org/10.3389/fmicb.2020.569366 DOI
Kalam S, Das SN, Basu A, Podile AR (2017) Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. J Basic Microbiol 57:376–385. https://doi.org/10.1002/jobm.201600588 PubMed DOI
Khatoon Z, Huang S, Farooq MA et al (2022) Role of plant growth-promoting bacteria (PGPB) in abiotic stress management. Mitig Plant Abiotic Stress by Microorg 257–272. https://doi.org/10.1016/b978-0-323-90568-8.00012-2
Kielak AM, Cipriano MAP, Kuramae EE (2016) Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch Microbiol 198:987–993. https://doi.org/10.1007/s00203-016-1260-2 PubMed DOI PMC
Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276. https://doi.org/10.1038/nrmicro.2018.9 PubMed DOI
Kwak M-J, Kong HG, Choi K et al (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36:1100–1109. https://doi.org/10.1038/nbt.4232 DOI
Lahsini AI, Sallami A, Ait-Ouakrim EH et al (2022) Isolation and molecular identification of an indigenous abiotic stress-tolerant plant growth-promoting rhizobacteria from the rhizosphere of the olive tree in southern Morocco. Rhizosphere. https://doi.org/10.1146/annurev-micro-102215-095748
Lewin GR, Carlos C, Chevrette MG et al (2016) Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol 70:235–254. https://doi.org/10.1146/annurev-micro-102215-095748 PubMed DOI PMC
Li X, Rui J, Mao Y et al (2014) Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem 68:392–401. https://doi.org/10.1016/j.soilbio.2013.10.017 DOI
Li Z, Henawy AR, Halema AA et al (2022) A wild rice Rhizobacterium Burkholderia cepacia BRDJ enhances nitrogen use efficiency in rice. Int J Mol Sci 23:10769. https://doi.org/10.3390/ijms231810769 PubMed DOI PMC
Lopes LD, Wang P, Futrell SL, Schachtman DP (2022) Sugars and jasmonic acid concentration in root exudates affect maize rhizosphere bacterial communities. Appl Environ Microbiol 88:e00971-e1022. https://doi.org/10.1128/aem.00971-22 PubMed DOI PMC
Luo H, Riu M, Ryu CM, Yu JM (2022) Volatile organic compounds emitted by Burkholderia pyrrocinia CNUC9 trigger induced systemic salt tolerance in Arabidopsis thaliana. Front Microbiol 13:1050901. https://doi.org/10.3389/fmicb.2022.1050901 PubMed DOI PMC
Luziatelli F, Gatti L, Ficca AG et al (2020) Metabolites secreted by a plant-growth-promoting Pantoea agglomerans strain improved rooting of Pyrus communis L. cv Dar Gazi cuttings. Front Microbiol 11:539359. https://doi.org/10.3389/fmicb.2020.539359
Lv N, Tao C, Ou Y et al (2023) Root-associated antagonistic Pseudomonas spp. contribute to soil suppressiveness against banana Fusarium wilt disease of banana. Microbiol Spectr 11:e03525-22. https://doi.org/10.1128/spectrum.03525-22 PubMed DOI PMC
Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80. https://doi.org/10.1016/j.ejsobi.2008.05.006 DOI
Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. https://doi.org/10.1126/science.1203980 PubMed DOI
Miguel M, Arellano J, Garcia de los Santos G et al (2004) Variedades Criollas de maíz azul raza Chalqueño. Características agronómicas y calidad de semilla. Rev Fitotec Mex 27:9–15
Nozari RM, Ortolan F, Astarita LV, Santarém ER (2021) Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Brazilian J Microbiol 52:1371–1383. https://doi.org/10.1007/s42770-021-00480-9 DOI
Orozco-Mosqueda MC, Velázquez-Becerra C, Macías-Rodríguez LI, Santoyo G, Flores-Cortez I, Alfaro-Cuevas R, Valencia-Cantero E (2013) Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant Soil 362:51–66. https://doi.org/10.1007/s11104-012-1263-y DOI
Orozco-Mosqueda MDC, Santoyo G, Glick BR (2023) Recent advances in the bacterial phytohormone modulation of plant growth. Plants 12:606. https://doi.org/10.3390/plants12030606 PubMed DOI PMC
Peiffer JA, Ley RE (2013) Exploring the maize rhizosphere microbiome in the field: a glimpse into a highly complex system. Commun Integr Biol 6:e25177. https://doi.org/10.4161/cib.25177 PubMed DOI PMC
Pereira SIA, Abreu D, Moreira H et al (2020) Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon 6:e05106. https://doi.org/10.1016/j.heliyon.2020.e05106 PubMed DOI PMC
Qian X, Lü Q, He X et al (2022) Pseudomonas sp. TCd-1 significantly alters the rhizosphere bacterial community of rice in Cd contaminated paddy field. Chemosphere 290:133257. https://doi.org/10.1016/j.chemosphere.2021.133257 PubMed DOI
Qin L, Tian P, Cui Q et al (2021) Bacillus circulans GN03 alters the microbiota, promotes cotton seedling growth and disease resistance, and increases the expression of phytohormone synthesis and disease resistance-related genes. Front Plant Sci 12:644597. https://doi.org/10.3389/fpls.2021.644597 PubMed DOI PMC
Real-Sosa KM, Hernández-Calderón E, Flores-Cortez I, Valencia-Cantero E (2021) Bacteria-derived N, N-dimethylhexadecylamine modulates the endophytic microbiome of Medicago truncatula in vitro. Rhizosphere 21:100470. https://doi.org/10.1016/j.rhisph.2021.100470 DOI
Renoud S, Abrouk D, Prigent-Combaret C et al (2022) Effect of inoculation level on the impact of the PGPR Azospirillum lipoferum CRT1 on selected microbial functional groups in the rhizosphere of field maize. Microorganisms 10:325. https://doi.org/10.3390/microorganisms10020325 PubMed DOI PMC
Rojas-Sánchez B, Castelán-Sánchez H, Santoyo G (2023) Inoculation with Pseudomonas fluorescens UM270 alters the maize root-associated endobiome and interacting networks in a milpa model. bioRxiv. 540877. https://doi.org/10.1101/2023.05.15.540877
Rondina ABL, dos Santos Sanzovo AW, Guimarães GS et al (2020) Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates. Biol Fertil Soils 56:537–549. https://doi.org/10.1007/s00374-020-01453-0 DOI
Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353. https://doi.org/10.1016/j.agee.2011.01.017 DOI
Singh S, Jagota N, Kaur H et al (2023) Deciphering behavioral changes in maize plants in a quest to identify species specific plant growth promoting rhizobacteria. Total Environ Res Themes 6:100043. https://doi.org/10.1016/j.totert.2023.100043 DOI
Sluyter A, Dominguez G (2006) Early maize (Zea mays L.) cultivation in Mexico: dating sedimentary pollen records and its implications. Proc Natl Acad Sci U S A 103:1147–1151. https://doi.org/10.1073/pnas.0510473103 PubMed DOI PMC
Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG et al (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266. https://doi.org/10.1007/s00248-011-9929-1 PubMed DOI
Świątczak J, Kalwasińska A, Szabó A, Swiontek Brzezinska M (2023) Pseudomonas sivasensis 2RO45 inoculation alters the taxonomic structure and functioning of the canola rhizosphere microbial community. Front Microbiol 14:1–10. https://doi.org/10.3389/fmicb.2023.1168907 DOI
Tagele SB, Kim SW, Lee HG, Lee YS (2019) Potential of novel sequence type of B urkholderia cenocepacia for biological control of root rot of maize (Zea mays L.) caused by Fusarium temperatum. Int J Mol Sci 20:1005. https://doi.org/10.3390/ijms20051005
Verma JP, Tiwari KN, Yadav J, Mishra AK (2018) Development of microbial consortia for growth attributes and protein content in micropropagated Bacopa monnieri (L.). Proc Natl Acad Sci India Sect B - Biol Sci 88:143–151. https://doi.org/10.1007/s40011-016-0743-x DOI
Vescio R, Malacrinò A, Bennett AE, Sorgonà A (2021) Single and combined abiotic stressors affect maize rhizosphere bacterial microbiota. Rhizosphere 17:100318. https://doi.org/10.1016/j.rhisph.2021.100318 DOI
Walters WA, Jin Z, Youngblut N et al (2018) Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci U S A 115:7368–7373. https://doi.org/10.1073/pnas.1800918115 PubMed DOI PMC
Wang HW, Ma CY, Xu FJ et al (2021) Root endophyte-enhanced peanut-rhizobia interaction is associated with regulation of root exudates. Microbiol Res 250:126765. https://doi.org/10.1016/j.micres.2021.126765 PubMed DOI
Wattenburger CJ, Halverson LJ, Hofmockel KS (2019) Agricultural management affects root-associated microbiome recruitment over maize development. Phytobiomes J 3:260–272. https://doi.org/10.1094/PBIOMES-03-19-0016-R DOI
Yasmin H, Rashid U, Hassan MN et al (2021) Volatile organic compounds produced by Pseudomonas pseudoalcaligenes alleviated drought stress by modulating defense system in maize (Zea mays L.). Physiol Plant 172:896–911. https://doi.org/10.1111/ppl.13304 PubMed DOI
Zhu Q, Zhou J, Sun M et al (2023) A newly isolated Bacillus megaterium OQ560352 promotes maize growth in saline soils by altering rhizosphere microbial communities and organic phosphorus utilization. Rhizosphere 27:100746. https://doi.org/10.1016/j.rhisph.2023.100746 DOI