Sum or mean in calculation of qualitative scoring methods using the Dragonfly Biotic Index, and an alternative approach facilitating conservation prioritization
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
38762626
PubMed Central
PMC11102514
DOI
10.1038/s41598-024-62017-y
PII: 10.1038/s41598-024-62017-y
Knihovny.cz E-resources
- MeSH
- Algorithms MeSH
- Biodiversity * MeSH
- Ecosystem MeSH
- Fresh Water MeSH
- Odonata * physiology MeSH
- Conservation of Natural Resources * methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Qualitative scoring methods are tools for rapid freshwater health assessments. Total score is often calculated as the sum or mean of the values of the species involved, with minor nuances in interpretation, but with significant implications. We used the Dragonfly Biotic Index (DBI) calculated on Central European odonate species to demonstrate these implications. Each species within a community has a score ranging from 0 (widespread generalists) to 9 (sensitive specialists). A total score is calculated as the sum of the scores of all species (DBIsum) or is calculated by dividing by species richness (DBImean). Despite this duality, there has been little debate on either approach. Using simulated scenarios (high vs low richness, presence or absence of high- or low-scoring species), we tested the implications of DBIsum and DBImean and suggested a total score calculation for conservation prioritization based on permutation. This algorithm shows the percentile of a community compared to a set of randomly assembled communities of the same species richness. We also present the 'dragDBI' package for the statistical software R, a tool for more automated DBI-based environmental health assessments. Our permutational calculation is applicable to other macroinvertebrate-based scoring methods, such as the Biological Monitoring Working Party and the Average Score Per Taxon.
See more in PubMed
Reid AJ, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019;94:849–873. doi: 10.1111/brv.12480. PubMed DOI
Strayer DL, Dudgeon D. Freshwater biodiversity conservation: Recent progress and future challenges. J. North Am. Benthol. Soc. 2010;29:344–358. doi: 10.1899/08-171.1. DOI
Vörösmarty CJ, et al. Global threats to human water security and river biodiversity. Nature. 2010;467:555–561. doi: 10.1038/nature09440. PubMed DOI
Kietzka GJ, Pryke JS, Samways MJ. Comparative effects of urban and agricultural land transformation on Odonata assemblages in a biodiversity hotspot. Basic Appl. Ecol. 2018;33:89–98. doi: 10.1016/j.baae.2018.08.008. DOI
Vorster C, et al. Development of a new continental-scale index for freshwater assessment based on dragonfly assemblages. Ecol. Indic. 2020;109:105819. doi: 10.1016/j.ecolind.2019.105819. DOI
Rosset V, et al. Comparative assessment of scoring methods of the conservation value of biodiversity in ponds and small lakes. Aquat. Conserv. Mar. Freshw. 2013;23:23–36. doi: 10.1002/aqc.2287. DOI
McGeoch MA. The selection, testing, and application of terrestrial insects as bioindicators. Biol. Rev. 1998;73:181–201. doi: 10.1017/S000632319700515X. DOI
Samways MJ. Insect Conservation: A Global Synthesis. CABI; 2020.
Šigutová H, et al. Odonata as indicators of pollution, habitat quality, and landscape disturbance. In: Cordoba-Aguilar A, Beatty C, Bried J, et al., editors. Dragonflies and Damselflies. Oxford University Press; 2003. pp. 371–384.
Bried JT, Samways MJ. A review of odonatology in freshwater applied ecology and conservation science. Freshw. Sci. 2015;34:1023–1031. doi: 10.1086/682174. DOI
Chovanec A, Waringer J. Ecological integrity of river–floodplain systems—assessment by dragonfly surveys (Insecta: Odonata) Regul. Rivers Res. Manag. 2001;17:493–507. doi: 10.1002/rrr.664. DOI
Kutcher TE, Bried JT. Adult Odonata conservatism as an indicator of freshwater wetland condition. Ecol. Indic. 2014;38:31–39. doi: 10.1016/j.ecolind.2013.10.028. DOI
Samways MJ, Steytler NS. Dragonfly (Odonata) distribution patterns in urban and forest landscapes, and recommendations for riparian management. Biol. Conserv. 1996;78:279–288. doi: 10.1016/S0006-3207(96)00032-8. DOI
Samways, M. J. & Simaika, J. P. Manual of Freshwater Assessment for South Africa: Dragonfly Biotic Index. Suricata 2 (South African National Biodiversity Institute, 2016).
Simaika JP, Samways MJ. Valuing dragonflies as service providers. In: Córdoba-Aguilar A, editor. Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. Oxford University Press; 2008. pp. 109–123.
Simaika JP, Samways MJ. Comparative assessment of indices of freshwater habitat conditions using different invertebrate taxon sets. Ecol. Indic. 2011;11:370–378. doi: 10.1016/j.ecolind.2010.06.005. DOI
Simaika JP, Samways MJ. An easy-to-use index of ecological integrity for prioritizing freshwater sites and for assessing habitat quality. Biodivers. Conserv. 2009;18:1171–1185. doi: 10.1007/s10531-008-9484-3. DOI
Briggs AJ, Pryke JS, Samways MJ, Conlong DE. Complementarity among dragonflies across a pondscape in a rural landscape mosaic. Insect Conserv. Divers. 2019;12:241–250. doi: 10.1111/icad.12339. DOI
Simaika JP, Samways MJ. Using dragonflies to monitor and prioritize lotic systems: A South African perspective. Org. Divers. Evol. 2012;12:251–259. doi: 10.1007/s13127-012-0104-4. DOI
Harabiš F, Dolný A. Human altered ecosystems: Suitable habitats as well as ecological traps for dragonflies (Odonata): The matter of scale. J. Insect Conserv. 2012;16:121–130. doi: 10.1007/s10841-011-9400-0. DOI
Harabiš F, Dolný A. Odonates need natural disturbances: How human-induced dynamics affect the diversity of dragonfly assemblages. Freshw. Sci. 2015;34:1050–1057. doi: 10.1086/682234. DOI
Harabiš F, Dolný A. Military training areas as refuges for threatened dragonfly species: Effect of spatial isolation and military activity. Biol. Conserv. 2018;217:28–35. doi: 10.1016/j.biocon.2017.10.021. DOI
Kietzka GJ, Pryke JS, Gaigher R, Samways MJ. 32 years of essential management to retain value of an urban dragonfly awareness pond. Urban Ecosyst. 2021;24:1295–1304. doi: 10.1007/s11252-021-01115-5. DOI
Kietzka GJ, Pryke JS, Gaigher R, Samways MJ. Webs of well-designed conservation corridors maintain river ecosystem integrity and biodiversity in plantation mosaics. Biol. Conserv. 2021;254:108965. doi: 10.1016/j.biocon.2021.108965. DOI
Dolný A, Pyszko P, Šigutová H. Community changes in odonate monitoring: Why are long-term studies so relevant? Insect Conserv. Divers. 2021;14:597–608. doi: 10.1111/icad.12491. DOI
Kolar V, Vlašánek P, Boukal DS. The influence of successional stage on local odonate communities in man-made standing waters. Ecol. Eng. 2021;173:106440. doi: 10.1016/j.ecoleng.2021.106440. DOI
Šigutová H, Pyszko P, Valušák J, Dolný A. Highway stormwater ponds as islands of Odonata diversity in an agricultural landscape. Sci. Total Environ. 2022;837:155774. doi: 10.1016/j.scitotenv.2022.155774. PubMed DOI
Vilenica M, Rebrina F, Ružanović L, Gulin V, Brigić A. Odonata assemblages as a tool to assess the conservation value of intermittent rivers in the Mediterranean. Insects. 2022;13:584. doi: 10.3390/insects13070584. PubMed DOI PMC
Dolný A, Harabiš F. Underground mining can contribute to freshwater biodiversity conservation: Allogenic succession forms suitable habitats for dragonflies. Biol. Conserv. 2012;145:109–117. doi: 10.1016/j.biocon.2011.10.020. DOI
Harabiš F, Tichanek F, Tropek R. Dragonflies of freshwater pools in lignite spoil heaps: Restoration management, habitat structure and conservation value. Ecol. Eng. 2013;55:51–61. doi: 10.1016/j.ecoleng.2013.02.007. DOI
Khelifa R. Sensitivity of biodiversity indices to life history stage, habitat type and landscape in Odonata community. Biol. Conserv. 2019;237:63–69. doi: 10.1016/j.biocon.2019.06.010. DOI
Simaika JP, Samways MJ, Frenzel PP. Artificial ponds increase local dragonfly diversity in a global biodiversity hotspot. Biodivers. Conserv. 2016;25:1921–1935. doi: 10.1007/s10531-016-1168-9. DOI
Diedericks, G., Simaika, J. & Roux, F. A survey of adult Odonata along the Crocodile-Inkomati river Main Stem from source to ocean: A pilot project to determine the application of the Dragonfly Biotic Index (DBI) as an indicator of river health. Rep. Mpumalanga Parks Tour Agency 1–56 (2013).
Kalkman VJ, et al. European Red List of Dragonflies. Publications Office of the European Union; 2010.
Samways MJ, Taylor S. Impacts of invasive alien plants on Red-Listed South African dragonflies (Odonata): Working for water. South Afr. J. Sci. 2004;100:78–80.
Clausnitzer V, et al. Focus on African freshwaters: Hotspots of dragonfly diversity and conservation concern. Front. Ecol. Environ. 2012;10:129–134. doi: 10.1890/110247. DOI
National Water Council . River Quality: The 1981 Survey and Future Outlook. National Water Council; 1981.
Hawkes A. Origin and development of the biological monitoring working party score system. Water Res. 1998;32:964–968. doi: 10.1016/S0043-1354(97)00275-3. DOI
Friedrich G, Chapman D, Beim A. The Use of Biological Material. In: Chapman D, editor. Water Quality Assessments: A Guide to Use of Biota, Sediments and Water in Environmental Monitoring. 2. E & FN Spon; 1996. pp. 182–245.
Armitage PD, Moss D, Wright JF, Furse MT. The performance of a new biological score system based on macro-invertebrates over a wide range of unpolluted running-water sites. Water Res. 1983;17:333–347. doi: 10.1016/0043-1354(83)90188-4. DOI
Li L, Zheng B, Liu L. Biomonitoring and bioindicators used for river ecosystems: Definitions, approaches and trends. Procedia Environ. Sci. 2010;2:1510–1524. doi: 10.1016/j.proenv.2010.10.164. DOI
Singh N, Choudhary BK, Singh S, Kumar R. Monitoring and assessment of anthropogenic impacts on water quality by estimating the BMWP and ASPT indices for a headwater stream in Doon Valley, India. Sustain. Water Resour. Manag. 2022;8:108. doi: 10.1007/s40899-022-00701-5. DOI
Pineda-Pineda JJ, Rosas JL, Sigarreta J, Hernández-Gómez J, Umaña M. Biotic indices to evaluate water quality: BMWP. Int. J. Environ. Ecol. Fam. Urban Stud. 2018;8:23–36.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Khelifa R, et al. Dragonfly conservation in the increasingly stressed African Mediterranean-type ecosystems. Front. Environ. Sci. 2021;9:660163. doi: 10.3389/fenvs.2021.660163. DOI
Kietzka GJ, Pryke JS, Samways MJ. Landscape ecological networks are successful in supporting a diverse dragonfly assemblage. Insect Conserv. Divers. 2015;8:229–237. doi: 10.1111/icad.12099. DOI
Adu BW, Amusan BO, Oke TO. Assessment of the water quality and Odonata assemblages in three waterbodies in Ilara-Mokin, south-western Nigeria. Int. J. Odonatol. 2019;22:101–114. doi: 10.1080/13887890.2019.1593889. DOI
Ilhamdi ML, Idrus AA, Santoso D. Biotic index of dragonflies in the Suranadi Natural Park area West Lombok. J. Pijar Mipa. 2020;15:424–428. doi: 10.29303/jpm.v15i4.2201. DOI
Uyizeye E, et al. Developing an odonate-based index for prioritizing conservation sites and monitoring restoration of freshwater ecosystems in Rwanda. Ecol. Indic. 2021;125:107586. doi: 10.1016/j.ecolind.2021.107586. DOI
McGeoch MA. Insects and bioindication: Theory and practice. In: Stewart AJ, New TR, Lewis OT, editors. Insect Conservation Biology. CABI; 2007. pp. 144–174.
Smith J, Samways MJ, Taylor S. Assessing riparian quality using two complementary sets of bioindicators. Biodivers. Conserv. 2007;16:2695–2713. doi: 10.1007/s10531-006-9081-2. DOI
Wilkinson DM. The disturbing history of intermediate disturbance. Oikos. 1999;84:145–147. doi: 10.2307/3546874. DOI
Baltanás A. On the use of some methods for the estimation of species richness. Oikos. 1992;65:484–492. doi: 10.2307/3545566. DOI
Magurran AE. Ecological Diversity and Its Measurement. Springer; 1988.
Fleishman E, Noss RF, Noon BR. Utility and limitations of species richness metrics for conservation planning. Ecol. Indic. 2006;6:543–553. doi: 10.1016/j.ecolind.2005.07.005. DOI
Assandri G, Bazzi G. Natural and anthropogenic determinants of peatland dragonfly assemblages: Implications for management and conservation. Biodivers. Conserv. 2022;31:703–722. doi: 10.1007/s10531-022-02358-0. DOI
Spitzer K, Danks H. Insect biodiversity of boreal peat bogs. Annu. Rev. Entomol. 2006;51:137–161. doi: 10.1146/annurev.ento.51.110104.151036. PubMed DOI
Abellán P, Sánchez-Fernández D, Velasco J, Millán A. Conservation of freshwater biodiversity: A comparison of different area selection methods. Biodivers. Conserv. 2005;14:3457–3474. doi: 10.1007/s10531-004-0550-1. DOI
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI
Margules CR, Pressey RL. Systematic conservation planning. Nature. 2000;405:243–253. doi: 10.1038/35012251. PubMed DOI
Lawler JJ, White D, Sifneos JC, Master LL. Rare species and the use of indicator groups for conservation planning. Conserv. Biol. 2003;17:875–882. doi: 10.1046/j.1523-1739.2003.01638.x. DOI
Chutter FM. The rapid biological assessment of streams and river water quality by means of macroinvertebrate communities in South Africa. In: Uys MC, editor. Classification of Rivers and Environmental Health Indicators. WRC Report No TT 63(94) Water Research Commission Report No. TT 63/94; 1994. pp. 217–234.
Dallas, H. F. River Health Programme: South African Scoring System (SASS) Data Interpretation Guidelines. Report Produced for the Department of Water Affairs and Forestry (Resource Quality Services) and the Institute of Natural Resources (University of Cape Town, 2007).
Leroy B, Petillon J, Gallon R, Canard A, Ysnel F. Improving occurrence-based rarity metrics in conservation studies by including multiple rarity cut-off points. Insect Conserv. Divers. 2012;5:159–168. doi: 10.1111/j.1752-4598.2011.00148.x. DOI
Samways MJ, Sharratt NJ. Recovery of endemic dragonflies after removal of invasive alien trees. Conserv. Biol. 2010;24:267–277. doi: 10.1111/j.1523-1739.2009.01427.x. PubMed DOI