An adventurous journey toward and away from fern apomixis: Insights from genome size and spore abortion patterns

. 2024 May ; 111 (5) : e16332. [epub] 20240519

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38762794

PREMISE: Apomixis in ferns is relatively common and obligatory. Sterile hybrids may restore fertility via apomixis at a cost of long-term genetic stagnation. In this study, we outlined apomixis as a possible temporary phase leading to sexuality and analyzed factors relating to transitioning to and away from apomixis, such as unreduced and reduced spore formation in apomict and apo-sex hybrid ferns. METHODS: We analyzed the genome size of 15 fern species or hybrids ("taxa") via flow cytometry. The number of reduced and unreduced gametophytes was established as a proxy for viable spore formation of either type. We also calculated the spore abortion ratio (sign of reduced spores) in several taxa, including the apo-sex hybrid Dryopteris × critica and its 16 apomictically formed offspring. RESULTS: Four of 15 sampled taxa yielded offspring variable in genome size. Specifically, each variable taxon formed one viable reduced plant among 12-451 sampled gametophytes per taxon. Thus, haploid spore formation in the studied apomicts was very rare but possible. Spore abortion analyses indicated gradually decreasing abortion (haploid spore formation) over time. In Dryopteris × critica, abortion decreased from 93.8% to mean 89.5% in one generation. CONCLUSIONS: Our results support apomixis as a transitionary phase toward sexuality. Newly formed apomicts hybridize with sexual relatives and continue to form haploid spores early on. Thus, they may get the genomic content necessary for regular meiosis and restore sexuality. If the missing relative goes extinct, the lineage gets locked into apomixis as may be the case with the Dryopteris affinis complex.

Zobrazit více v PubMed

Bainard, J. D., T. A. Henry, L. D. Bainard, and S. G. Newmaster. 2011. DNA content variation in monilophytes and lycophytes: large genomes that are not endopolyploid. Chromosome Research 19: 763–775.

Blasio, F., P. Prieto, M. Pradillo, and T. Naranjo. 2022. Genomic and meiotic changes accompanying polyploidization. Plants 11: 125.

Doležel, J., J. Greilhuber, and J. Suda. 2007a. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley‐VCH‐Verl, Weinheim.

Doležel, J., J. Greilhuber, and J. Suda. 2007b. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233–2244.

Doležal, J., A. Krahulcová, T. Urfus, and F. Krahulec. 2020. Residual sexuality of the apomict Pilosella rubra under natural conditions in the Krkonoše Mts. Preslia 92: 403–428.

Doležel, J., S. Sgorbati, and S. Lucretti. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625–631.

Driscoll, H. E., and D. S. Barrington. 2003. A reexamination of the apogamous tetraploid Phegopteris (Thelypteridaceae) from northeastern North America. Rhodora 105: 309–321.

Ekrt, L., and P. Koutecký. 2016. Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae). Annals of Botany 117: 97–106.

Ekrt, L., P. Trávníček, V. Jarolímová, P. Vít, and T. Urfus. 2009. Genome size and morphology of the Dryopteris affinis group in Central Europe. Preslia 81: 261–280.

Eschelmüller, A. 1998a. Keimversuche mit Sporen der diploiden Sippen von Dryopteris affinis und ihren Bastarden mit Dryopteris filix‐mas. Mitteilungen des Naturwisssenschaftlichen Arbeitskreises Kempten 35: 27–50.

Eschelmüller, A. 1998b. Keimversuche mit Sporen der triploiden Sippen von Dryopteris affinis und ihren Bastarden mit Dryopteris filix‐mas. Mitteilungen des Naturwisssenschaftlichen Arbeitskreises Kempten 36: 47–78.

Fraser‐Jenkins, C. R. 2007. The species and subspecies in the Dryopteris affinis group. Fern Gazette 18: 1–26.

Freigang, J., G. Zenner, W. Bujnoch, S. Jessen, and M. Magauer. 2017. Dryopteris × alpirsbachensis, hybr. nov. – erster Nachweis der Naturhybride zwischen Dryopteris carthusiana und Dryopteris remota (Dryopteridaceae, Pteridophyta). Kochia 10: 11–33.

Grusz, A. L. 2014. Evolutionary patterns and processes in the desert‐adapted fern genus Myriopteris. Ph.D. dissertation, Duke University, Durham, NC, USA.

Grusz, A. L. 2016. A current perspective on apomixis in ferns. Journal of Systematics and Evolution 54: 656–665.

Grusz, A. L., M. D. Windham, K. T. Picard, K. M. Pryer, E. Schuettpelz, and C. H. Haufler. 2021. A drought‐driven model for the evolution of obligate apomixis in ferns: evidence from pellaeids (Pteridaceae). American Journal of Botany 108: 263–283.

Hanušová, K., M. Čertner, T. Urfus, P. Koutecký, J. Košnar, C. J. Rothfels, V. Jarolímová, J. J. Ptáček and L. Ekrt. 2019. Widespread co‐occurrence of multiple ploidy levels in fragile ferns (Cystopteris fragilis complex; Cystopteridaceae) likely stems from similar ecology of cytotypes, their efficient dispersal and inter‐ploidy hybridization. Annals of Botany 123: 845–855.

Haufler, C. H, K. M. Pryer, E. Schuettpelz, E. B. Sessa, D. R. Farrar, R. Moran, J. J. Schneller, J. E. Watkins, and M. D. Windham. 2016. Sex and the single gametophyte: revising the homosporous vascular plant life cycle in light of contemporary research. BioScience 66: 928–937.

Henry, T. A., J. D. Bainard, and S. G. Newmaster. 2014. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing. Genome 57: 555–566.

Hidalgo, O., J. Pellicer, M. Christenhusz, H. Schneider, and I. J. Leitch. 2017a. Genomic gigantism in the whisk‐fern family (Psilotaceae): Tmesipteris obliqua challenges record holder Paris japonica. Botanical Journal of the Linnean Society 183: 509–514.

Hidalgo, O., J. Pellicer, M. Christenhusz, H. Schneider, A. R. Leitch, and I. J. Leitch. 2017b. Is there an upper limit to genome size? Trends in Plant Science 22: 567–573.

Hirabayashi, H. 1967. Chromosome number in Japanese species of Dryopteris (2). Journal of Japanese Botany 42: 44–48.

Hirabayashi, H. 1970. Chromosome number in several species of the Aspidiaceae (2). Journal of Japanese Botany 45: 45–52.

Hori, K., Y. Okuyama, Y. Watano, and N. Murakami. 2018a. Recurrent hybridization without homoeologous chromosome paring in the Dryopteris varia complex (Dryopteridaceae). Chromosome Botany 13: 9–24.

Hori, K., X. Zhou, Y‐H. Yan, Y. Inoue, and N. Murakami. 2018b. Evidence for maternal ability in hybridization of apogamous fern species: Dryopteris tsushimense K. Hori & N. Murak. and D. subtsushimense K. Hori & N. Murak. (Dryopteridaceae), new tetraploid apogamous pteridophytes of hybrid origin from Tsushima, Japan. Acta Phytotaxonomica et Geobotanica 69: 143–160.

Hornych, O., and L. Ekrt. 2017. Spore abortion index (SAI) as a promising tool of evaluation of spore fitness in ferns: an insight into sexual and apomictic species. Plant Systematics and Evolution 303: 497–507.

Hornych, O., A. Férová, K. Hori, J. Košnar, and L. Ekrt. 2022. Apomictic fern fathers: an experimental approach to the reproductive characteristics of sexual, apomict, and hybrid fern gametophytes. American Journal of Botany 109: 628–644.

Hornych, O., W. L. Testo, E. B. Sessa, J. E. Watkins, C. E. Campany, J. Pittermann, and L. Ekrt. 2021. Insights into the evolutionary history and widespread occurrence of antheridiogen systems in ferns. New Phytologist 229: 607–619.

Kawakami, S. M., S. Kawakami, J. Kato, S. V. Smirnov, and K. Kondo. 2016. Decaploid gametophyte formation from spores of a pentaploid Cystopteris fragilis (Cystopteridaceae) collected in Mongolian Altai. Fern Gazette 20: 149–155.

Kim, H. T., S. H. Park, and J. S. Kim. 2023. Dynamic hybridization between two spleenworts, Asplenium incisum and Asplenium ruprechtii in Korea. Frontiers in Plant Science 14: 1116040.

Kojima, A., and Y. Nagato. 1997. Discovery of highly apomictic and highly amphimictic dihaploids in Allium tuberosum. Sexual Plant Reproduction 10: 8–12.

Korpelainen, H. 1994. Growth, sex determination and reproduction of Dryopteris filix‐mas (L.) Schott gametophytes under varying nutritional conditions. Botanical Journal of the Linnean Society 114: 357–366.

Krahulcová, A., O. Rotreklová, and F. Krahulec. 2014. The detection, rate and manifestation of residual sexuality in apomictic populations of Pilosella (Asteraceae, Lactuceae). Folia Geobotanica 49: 239–258.

Leitch, I. J, and M. D. Bennett. 2004. Genome downsizing in polyploid plants. Biological Journal of the Linnean Society 82: 651–663.

Lepší, M., P. Koutecký, J. Nosková, P. Lepší, T. Urfus, and T. C. G. Rich. 2019. Versatility of reproductive modes and ploidy level interactions in Sorbus s.l. (Malinae, Rosaceae). Botanical Journal of the Linnean Society 191: 502–522.

Lin, S.‐J., M. Kato, and K. Iwatsuki. 1992. Diploid and triploid offspring of triploid agamosporous fern Dryopteris pacifica. Botanical Magazine Tokyo 105: 443–452.

Liu, H.‐M., R. J. Dyer, Z.‐Y. Guo, Z. Meng, J.‐H. Li, and H. Schneider. 2012. The evolutionary dynamics of apomixis in ferns: a case study from polystichoid ferns. Journal of Botany 2012: 510478.

Manton, I. 1950. Problems of cytology and evolution in the Pteridophyta. Cambridge University Press, London, UK.

Mulligan, G. A., L. Cinq‐Mars, and W. J. Cody. 1972. Natural interspecific hybridization between sexual and apogamous species of the beech fern genus Phegopteris Fée. Canadian Journal of Botany 50: 1295–1300.

Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.

Nakato, N., and S. Masuyama. 2021. Polyploid progeny from triploid hybrids of Phegopteris decursivepinnata (Thelypteridaceae). Journal of Plant Research 134: 195–208.

Ootsuki, R., H. Sato, N. Nakato, and N. Murakami. 2012. Evidence of genetic segregation in the apogamous fern species Cyrtomium fortunei (Dryopteridaceae). Journal of Plant Research 125: 605–612.

Pajarón, S., E. Pangua, L. G. Quintanilla, and A. Jiménez. 2015. Influence of water availability on gender determination of gametophytes in a diploid–polyploid complex of a xerophytic fern genus. AoB Plants 7: plv047.

Picard, K. T., H. Ranft, A. L. Grusz, M. D. Windham, and E. Schuettpelz. 2021. When it only takes one to tango: assessing the impact of apomixis in the fern genus Pteris. American Journal of Botany 108: 2220–2234.

Pintér, I. 1995. Progeny studies of the fern hybrid Polystichum ×  bicknellii. Fern Gazette 15: 25–40.

PPG I. 2016. A community‐derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 563–603.

Ptáček, J., L. Ekrt, O. Hornych, and T. Urfus. 2023. Interploidy gene flow via a ‘pentaploid bridge’ and ploidy reduction in Cystopteris fragilis fern complex (Cystopteridaceae: Polypodiales). Plant Reproduction 36: 321–331.

Quintanilla, L. G., and A. Escudero. 2006. Spore fitness components do not differ between diploid and allotetraploid species of Dryopteris (Dryopteridaceae). Annals of Botany 98: 609–618.

Raghavan, V. 1989. Developmental biology of fern gametophytes. Cambridge University Press, Cambridge, UK.

Schneller, J. J. 2008. Antheridiogens. In T. A. Ranker and C. H. Haufler [eds.], Biology and evolution of ferns and lycophytes, 134–158. Cambridge University Press, Cambridge, UK.

Soare, L. C. 2008. In vitro development of gametophyte and sporophyte in several fern species. Notulae Botanicae Horti Agrobotanici Cluj‐Napoca 36: 13–19.

Soltis, P. S., D. B. Marchant, Y. Van de Peer, and D. E. Soltis. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development 35: 119–125.

Vojtěchová, K., L. Kobrlová, P. Schönswetter, and M. Duchoslav. 2023. Disentangling the taxonomic structure of the Allium paniculatum species complex in central and eastern Europe using molecular, cytogenetic and morphological tools. Preslia 95: 119–163.

Wagner, W. H., and K. L. Chen. 1965. Abortion of spores and sporangia as a tool in the detection of Dryopteris hybrids. American Fern Journal 55: 9–29.

Widén, C‐J., C. Fraser‐Jenkins, T. Reichstein, M. Gibby, and J. Sarvela. 1996. Phloroglucinol derivatives in Dryopteris sect. Fibrillosae and related taxa (Pteridophyta, Dryopteridaceae). Annales Botanici Fennici 33: 69–100.

Wolf, P. G., E. B. Sessa, D. B. Marchant, F.‐W. Li, C. J. Rothfels, E. M. Sigel, M. A. Gitzendanner, et al. 2015. An exploration into fern genome space. Genome Biology and Evolution 7: 2533–2544.

Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon, and L. H. Rieseberg. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875–13879.

Yamane, H. 1998. Fern antheridiogens. International Review of Cytology 184: 1–32.

Zenil‐Ferguson, R., J. M. Ponciano, and J. G. Burleigh. 2016. Evaluating the role of genome downsizing and size thresholds from genome size distributions in angiosperms. American Journal of Botany 103: 1175–1186.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...