Nanomedicine-mediated recovery of antioxidant glutathione peroxidase activity after oxidative-stress cellular damage: Insights for neurological long COVID

. 2024 May ; 96 (5) : e29680.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38767144

Grantová podpora
European Regional Development Fund
European Commission

Nanomedicine for treating post-viral infectious disease syndrome is at an emerging stage. Despite promising results from preclinical studies on conventional antioxidants, their clinical translation as a therapy for treating post-COVID conditions remains challenging. The limitations are due to their low bioavailability, instability, limited transport to the target tissues, and short half-life, requiring frequent and high doses. Activating the immune system during coronavirus (SARS-CoV-2) infection can lead to increased production of reactive oxygen species (ROS), depleted antioxidant reserve, and finally, oxidative stress and neuroinflammation. To tackle this problem, we developed an antioxidant nanotherapy based on lipid (vesicular and cubosomal types) nanoparticles (LNPs) co-encapsulating ginkgolide B and quercetin. The antioxidant-loaded nanocarriers were prepared by a self-assembly method via hydration of a lyophilized mixed thin lipid film. We evaluated the LNPs in a new in vitro model for studying neuronal dysfunction caused by oxidative stress in coronavirus infection. We examined the key downstream signaling pathways that are triggered in response to potassium persulfate (KPS) causing oxidative stress-mediated neurotoxicity. Treatment of neuronally-derived cells (SH-SY5Y) with KPS (50 mM) for 30 min markedly increased mitochondrial dysfunction while depleting the levels of both glutathione peroxidase (GSH-Px) and tyrosine hydroxylase (TH). This led to the sequential activation of apoptotic and necrotic cell death processes, which corroborates with the crucial implication of the two proteins (GSH-Px and TH) in the long-COVID syndrome. Nanomedicine-mediated treatment with ginkgolide B-loaded cubosomes and vesicular LNPs showed minimal cytotoxicity and completely attenuated the KPS-induced cell death process, decreasing apoptosis from 32.6% (KPS) to 19.0% (MO-GB), 12.8% (MO-GB-Quer), 14.8% (DMPC-PEG-GB), and 23.6% (DMPC-PEG-GB-Quer) via free radical scavenging and replenished GSH-Px levels. These findings indicated that GB-LNPs-based nanomedicines may protect against KPS-induced apoptosis by regulating intracellular redox homeostasis.

Zobrazit více v PubMed

Varahachalam SP, Lahooti B, Chamaneh M, et al. Nanomedicine for the SARS‐CoV‐2: state‐of‐the‐art and future prospects. Int J Nanomedicine. 2021;16:539‐560. doi:10.2147/IJN.S283686

Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. doi:10.1016/j.addr.2022.114416

Mainardes RM, Diedrich C. The potential role of nanomedicine on COVID‐19 therapeutics. Ther Delivery. 2020;11(7):411‐414. doi:10.4155/tde-2020-0069

Premraj L, Kannapadi NV, Briggs J, et al. Mid and long‐term neurological and neuropsychiatric manifestations of post‐COVID‐19 syndrome: a meta‐analysis. J Neurol Sci. 2022;434:120162. doi:10.1016/j.jns.2022.120162

Harapan BN, Yoo HJ. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and coronavirus disease 19 (COVID‐19). J Neurol. 2021;268(9):3059‐3071. doi:10.1007/s00415-021-10406-y

Carfì A, Bernabei R, Landi F, for the Gemelli Against COVID‐19 Post‐Acute Care Study Group. Persistent symptoms in patients after acute COVID‐19. JAMA. 2020;324(6):603. doi:10.1001/jama.2020.12603

Delgado‐Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS‐CoV) infection. Arch Med Res. 2020;51(5):384‐387. doi:10.1016/j.arcmed.2020.04.019

Nuzzo D, Cambula G, Bacile I, et al. Long‐term brain disorders in Post Covid‐19 Neurological Syndrome (PCNS) patient. Brain Sci. 2021;11(4):454. doi:10.3390/brainsci11040454

Boroujeni ME, Simani L, Bluyssen HAR, et al. Inflammatory response leads to neuronal death in human post‐mortem cerebral cortex in patients with COVID‐19. ACS Chem Neurosci. 2021;12(12):2143‐2150. doi:10.1021/acschemneuro.1c00111

Nuzzo D, Picone P. Potential neurological effects of severe COVID‐19 infection. Neurosci Res. 2020;158:1‐5. doi:10.1016/j.neures.2020.06.009

Nair A, Sharma P, Tiwary M. Glutathione deficiency in COVID19 illness‐does supplementation help? Saudi J Anaesth. 2021;15(4):458. doi:10.4103/sja.sja_320_21

Djanaguiraman M, Boyle DL, Welti R, Jagadish SVK, Prasad PVV. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biol. 2018;18(1):55. doi:10.1186/s12870-018-1263-z

Wang Q, Ma R, Liu P, et al. Efficient sustained‐release nanoparticle delivery system protects nigral neurons in a toxin model of Parkinson's disease. Pharmaceutics. 2022;14(8):1731. doi:10.3390/pharmaceutics14081731

Akanchise T, Angelova A. Ginkgo biloba and Long COVID: in vivo and in vitro models for the evaluation of nanotherapeutic efficacy. Pharmaceutics. 2023;15(5):1562. doi:10.3390/pharmaceutics15051562

Angelova A, Angelov B, Drechsler M, Bizien T, Gorshkova YE, Deng Y. Plasmalogen‐Based liquid crystalline multiphase structures involving docosapentaenoyl derivatives inspired by biological cubic membranes. Front Cell Dev Biol. 2021;9:617984. doi:10.3389/fcell.2021.617984

De Torre MP, Cavero RY, Calvo MI, Vizmanos JL. A simple and a reliable method to quantify antioxidant activity in vivo. Antioxidants. 2019;8(5):142. doi:10.3390/antiox8050142

Rolnik A, Soluch A, Kowalska I, Olas B. Antioxidant and hemostatic properties of preparations from Asteraceae family and their chemical composition—comparative studies. Biomed Pharmacother. 2021;142:111982. doi:10.1016/j.biopha.2021.111982

Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Frontiers. 2020;1(3):332‐349. doi:10.1002/fft2.44

Rakotoarisoa M, Angelov B, Espinoza S, Khakurel K, Bizien T, Angelova A. Cubic liquid crystalline nanostructures involving catalase and curcumin: BioSAXS study and catalase peroxidatic function after cubosomal nanoparticle treatment of differentiated SH‐SY5Y cells. Molecules. 2019;24(17):3058. doi:10.3390/molecules24173058

Kim H, Xue X. Detection of total reactive oxygen species in adherent cells by 2′,7′‐Dichlorodihydrofluorescein diacetate staining. JoVE. 2020;160:60682. doi:10.3791/60682

Cossarizza A, Ferraresi R, Troiano L, et al. Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry. Nat Protoc. 2009;4(12):1790‐1797. doi:10.1038/nprot.2009.189

Amiri F, Dahaj MM, Siasi NH, Deyhim MR. Treatment of platelet concentrates with the L‐carnitine modulates platelets oxidative stress and platelet apoptosis due to mitochondrial reactive oxygen species reduction and reducing cytochrome C release during storage. J Thromb Thrombolysis. 2021;51(2):277‐285. doi:10.1007/s11239-020-02241-1

Arazi H, Mohammadjafari H, Asadi A. Use of anabolic androgenic steroids produces greater oxidative stress responses to resistance exercise in strength‐trained men. Toxicol Rep. 2017;4:282‐286. doi:10.1016/j.toxrep.2017.05.005

Sullivan‐Gunn MJ, Campbell‐O'sullivan SP, Tisdale MJ, Lewandowski PA. Decreased NADPH oxidase expression and antioxidant activity in cachectic skeletal muscle. J Cachexia Sarcopenia Muscle. 2011;2(3):181‐188. doi:10.1007/s13539-011-0037-3

Dhall S, Do DC, Garcia M, et al. Generating and reversing chronic wounds in diabetic mice by manipulating wound redox parameters. J Diabetes Res. 2014;2014:1‐18. doi:10.1155/2014/562625

Wu Y, Angelov B, Deng Y, et al. Sustained CREB phosphorylation by lipid‐peptide liquid crystalline nanoassemblies. Commun Chem. 2023;6(1):241. doi:10.1038/s42004-023-01043-9

Rakotoarisoa M, Angelov B, Garamus VM, Angelova A. Curcumin‐ and fish oil‐loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2 O2 ‐induced oxidative stress in differentiated human SH‐SY5Y cells. ACS Omega. 2019;4(2):3061‐3073. doi:10.1021/acsomega.8b03101

Esposito E, Sguizzato M, Drechsler M, et al. Lipid nanostructures for antioxidant delivery: a comparative preformulation study. Beilstein J Nanotechnol. 2019;10:1789‐1801. doi:10.3762/bjnano.10.174

Kulkarni CV, Wachter W, Iglesias‐Salto G, Engelskirchen S, Ahualli S. Monoolein: a magic lipid? Phys Chem Chem Phys. 2011;13(8):3004‐3021. doi:10.1039/C0CP01539C

Bouffioux O, Berquand A, Eeman M, et al. Molecular organization of surfactin–phospholipid monolayers: effect of phospholipid chain length and polar head. Biochimica et Biophysica Acta (BBA) ‐ Biomembranes. 2007;1768(7):1758‐1768. doi:10.1016/j.bbamem.2007.04.015

Sivadasan D, Sultan MH, Alqahtani SS, Javed S. Cubosomes in drug delivery—a comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines. 2023;11(4):1114. doi:10.3390/biomedicines11041114

Angelova A, Drechsler M, Garamus VM, Angelov B. Pep‐lipid cubosomes and vesicles compartmentalized by Micelles from self‐assembly of multiple neuroprotective building blocks including a large peptide hormone PACAP‐DHA. ChemNanoMat. 2019;5(11):1381‐1389. doi:10.1002/cnma.201900468

Rakotoarisoa M, Angelov B, Espinoza S, et al. Composition‐switchable liquid crystalline nanostructures as green formulations of curcumin and fish oil. ACS Sustain Chem Eng. 2021;9(44):14821‐14835. doi:10.1021/acssuschemeng.1c04706

Fracassi A, Podolsky KA, Pandey S, et al. Characterizing the self‐assembly properties of monoolein lipid isosteres. J Phys Chem B. 2023;127(8):1771‐1779. doi:10.1021/acs.jpcb.2c07215

Zengin G, Aktumsek A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline Anatolica E. tuzlaci: an endemic plant to Turkey. Afr J Tradit Complement Altern Med. 2014;11(2):481. doi:10.4314/ajtcam.v11i2.37

Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48(6):749‐762. doi:10.1016/j.freeradbiomed.2009.12.022

Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11(10):4955‐4984. doi:10.1007/s12274-018-2092-y

Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86(1):715‐748. doi:10.1146/annurev-biochem-061516-045037

Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longevity. 2016;2016:1‐44. doi:10.1155/2016/1245049

Navarro‐Yepes J, Zavala‐Flores L, Anandhan A, et al. Antioxidant gene therapy against neuronal cell death. Pharmacol Ther. 2014;142(2):206‐230. doi:10.1016/j.pharmthera.2013.12.007

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363‐383. doi:10.1038/s41580-020-0230-3

Aranda‐Rivera AK, Cruz‐Gregorio A, Arancibia‐Hernández YL, Hernández‐Cruz EY, Pedraza‐Chaverri J. RONS and oxidative stress: an overview of basic concepts. Oxygen. 2022;2(4):437‐478. doi:10.3390/oxygen2040030

Popa‐Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM. ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longevity. 2013;2013:1‐14. doi:10.1155/2013/963520

Sharifi‐Rad J, Rapposelli S, Sestito S, et al. Multi‐target mechanisms of phytochemicals in Alzheimer's disease: effects on oxidative stress, neuroinflammation and protein aggregation. J Pers Med. 2022;12(9):1515. doi:10.3390/jpm12091515

Lee Mosley R, Benner EJ, Kadiu I, et al. Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson's disease. Clin Neurosci Res. 2006;6(5):261‐281. doi:10.1016/j.cnr.2006.09.006

Abdelrahman FE, Elsayed I, Gad MK, Badr A, Mohamed MI. Investigating the cubosomal ability for transnasal brain targeting: in vitro optimization, ex vivo permeation and in vivo biodistribution. Int J Pharm. 2015;490(1‐2):281‐291. doi:10.1016/j.ijpharm.2015.05.064

Wu H, Li J, Zhang Q, et al. A novel small Odorranalectin‐bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid‐β25–35‐treated rats following intranasal administration. Eur J Pharmaceut Biopharmaceut. 2012;80(2):368‐378. doi:10.1016/j.ejpb.2011.10.012

Cirmi S, Maugeri A, Lombardo GE, et al. A flavonoid‐rich extract of mandarin juice counteracts 6‐OHDA‐induced oxidative stress in SH‐SY5Y cells and modulates Parkinson‐related genes. Antioxidants. 2021;10(4):539. doi:10.3390/antiox10040539

Oyama Y, Chikahisa L, Ueha T, Kanemaru K, Noda K. Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen peroxide. Brain Res. 1996;712(2):349‐352. doi:10.1016/0006-8993(95)01440-3

Chen C, Wei T, Gao Z, et al. Different effects of the constituents of EGb761 on apoptosis in rat cerebellar granule cells induced by hydroxyl radicals. IUBMB Life. 1999;47(3):397‐405. doi:10.1080/15216549900201423

Xin W, Wei T, Chen C, Ni Y, Zhao B, Hou J. Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents. Toxicology. 2000;148(2‐3):103‐110. doi:10.1016/S0300-483X(00)00200-6

Guidetti C, Paracchini S, Lucchini S, Cambieri M, Marzatico F. Prevention of neuronal cell damage induced by oxidative stress in‐vitro: effect of different Ginkgo biloba extracts. J Pharm Pharmacol. 2010;53(3):387‐392. doi:10.1211/0022357011775442

Yang SF, Wu Q, Sun AS, Huang XN, Shi JS. Protective effect and mechanism of Ginkgo biloba leaf extracts for Parkinson disease induced by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine. Acta Pharmacol Sin. 2001;22(12):1089‐1093.

Alvarez‐Arellano L, Salazar‐García M, Corona JC. Neuroprotective effects of quercetin in pediatric neurological diseases. Molecules. 2020;25(23):5597. doi:10.3390/molecules25235597

Schroeter H, Spencer JPE, Rice‐Evans C, Williams RJ. Flavonoids protect neurons from oxidized low‐density‐lipoprotein‐induced apoptosis involving c‐Jun N‐terminal kinase (JNK), c‐Jun and caspase‐3. Biochem J. 2001;358(3):547‐557. doi:10.1042/bj3580547

Shi C, Zhao L, Zhu B, et al. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against β‐amyloid peptide‐induced toxicity in SH‐SY5Y cells. Chemico‐Biol Interact. 2009;181(1):115‐123. doi:10.1016/j.cbi.2009.05.010

Merzoug S, Toumi ML, Tahraoui A. Quercetin mitigates Adriamycin‐induced anxiety‐ and depression‐like behaviors, immune dysfunction, and brain oxidative stress in rats. Naunyn‐Schmiedeberg's Arch Pharmacol. 2014;387(10):921‐933. doi:10.1007/s00210-014-1008-y

Di Pierro F, Derosa G, Maffioli P, et al. Possible therapeutic effects of adjuvant quercetin supplementation against early‐stage COVID‐19 infection: a prospective, randomized, controlled, and open‐label study. Int J Gen Med. 2021;14:2359‐2366. doi:10.2147/IJGM.S318720

Derosa G, Maffioli P, D'Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother Res. 2021;35(3):1230‐1236. doi:10.1002/ptr.6887

Achete de Souza G, de Marqui SV, Matias JN, Guiguer EL, Barbalho SM. Effects of Ginkgo biloba on diseases related to oxidative stress. Planta Med. 2020;86(06):376‐386. doi:10.1055/a-1109-3405

Domingues RB, Mendes‐Correa MC, de Moura Leite FBV, et al. First case of SARS‐COV‐2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. J Neurol. 2020;267(11):3154‐3156. doi:10.1007/s00415-020-09996-w

Vollbracht C, Kraft K. Oxidative stress and hyper‐inflammation as major drivers of severe COVID‐19 and long COVID: implications for the benefit of high‐dose intravenous vitamin C. Front Pharmacol. 2022;13:899198. doi:10.3389/fphar.2022.899198

Ekambaram P, Abdul Hasan Sathali A. Formulation and evaluation of solid lipid nanoparticles of Ramipril. J Young Pharmacist. 2011;3(3):216‐220. doi:10.4103/0975-1483.83765

Bonaccorso A, Pellitteri R, Ruozi B, et al. Curcumin loaded polymeric vs. lipid nanoparticles: antioxidant effect on normal and hypoxic olfactory ensheathing cells. Nanomaterials. 2021;11(1):159. doi:10.3390/nano11010159

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...