Unveiling the microbial diversity of biofilms on titanium surfaces in full-scale water-cooling plants using metagenomics approach

. 2024 Dec ; 69 (6) : 1331-1341. [epub] 20240521

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38771555
Odkazy

PubMed 38771555
DOI 10.1007/s12223-024-01170-3
PII: 10.1007/s12223-024-01170-3
Knihovny.cz E-zdroje

Microbial colonization on the titanium condenser material (TCM) used in the cooling system leads to biofouling and corrosion and influences the water supply. The primary investigation of the titanium condenser was infrequently studied on characterizing biofilm-forming bacterial communities. Different treatment methods like electropotential charge, ultrasonication, and copper coating of titanium condenser material may influence the microbial population over the surface of the titanium condensers. The present study aimed to catalog the primary colonizers and the effect of different treatment methods on the microbial community. CFU (1.7 × 109 CFU/mL) and ATP count (< 5000 × 10-7 relative luminescence units) showed a minimal microbial population in copper-coated surface biofilm as compared with the other treatments. Live and dead cell result also showed consistency with colony count. The biofilm sample on the copper-coated surface showed an increased dead cell count and decreased live cells. In the metagenomic approach, the microbiome coverage was 10.06 Mb in samples derived from copper-coated TCM than in other treated samples (electropotential charge-17.94 Mb; ultrasonication-20.01 Mb), including control (10.18 Mb). Firmicutes preponderate the communities in the biofilm samples, and Proteobacteria stand next in the population in all the treated condenser materials. At the genus level, Lactobacillaceae and Azospirillaceae dominated the biofilm community. The metagenome data suggested that the attached community is different from those biofilm samples based on the environment that influences the bacterial community. The outcome of the present study depicts that copper coating was effective against biofouling and corrosion resistance of titanium condenser material for designing long-term durability.

Zobrazit více v PubMed

Ait Ouali F, Al Kassaa I, Cudennec B et al (2014) Identification of Lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces. Int J Food Microbiol 191:116–124. https://doi.org/10.1016/j.ijfoodmicro.2014.09.011 PubMed DOI

Almalki T, Anand S (2023) Ultrasound-assisted cavitation effect on the biofilm-forming ability of common dairy sporeformers. Dairy 4:100–107 DOI

Anandkumar B, George RP, Rao CJ, Philip J (2019) In situ application of alternate potentials with chlorination synergistically enhanced biofouling control of titanium condenser materials. Int Biodeterior Biodegradation 144:104746. https://doi.org/10.1016/j.ibiod.2019.104746 DOI

Anandkumar B, P George R, Karthik A et al (2016) Electroless copper plating of titanium condenser tubes for biofouling control. Innov Corros Mater Sci (Formerly Recent Patents Corros Sci) 6:65–73

Bezza FA, Tichapondwa SM, Chirwa EMN (2020) Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci Rep 10:1–18. https://doi.org/10.1038/s41598-020-73497-z DOI

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869 PubMed DOI PMC

Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522. https://doi.org/10.1073/pnas.1000080107 PubMed DOI

Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE (1994) Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother 38(12):2803–2809. https://doi.org/10.1128/AAC.38.12.2803 PubMed DOI PMC

Cruz-Hernández MA, Mendoza-Herrera A, Bocanegra-García V, Rivera G (2022) Azospirillum spp. from plant growth-promoting bacteria to their use in bioremediation. Microorganisms 10:1–13. https://doi.org/10.3390/microorganisms10051057 DOI

da Silva FS, de Paula e Silva ACA, Barbugli PA et al (2021) Anti-biofilm activity and in vitro biocompatibility of copper surface prepared by cold gas spray. Surf Coatings Technol. https://doi.org/10.1016/j.surfcoat.2021.126981 DOI

Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80:91–138. https://doi.org/10.1128/mmbr.00037-15 PubMed DOI

Del Pozo JL, Patel R (2007) The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82:204–209. https://doi.org/10.1038/sj.clpt.6100247 PubMed DOI

Ding W, Zhang W, Alikunhi NM et al (2019) Metagenomic analysis of zinc surface–associated marine biofilms. Microb Ecol 77:406–416. https://doi.org/10.1007/s00248-018-01313-3 PubMed DOI

Dos Santos HRM, Argolo CS, Argôlo-Filho RC, Loguercio LL (2019) A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol 19:1–14. https://doi.org/10.1186/s12866-019-1446-2 DOI

El Othmany R, Zahir H, Ellouali M, Latrache H (2021) Current understanding on adhesion and biofilm development in actinobacteria. Int J Microbiol 2021:6637438. https://doi.org/10.1155/2021/6637438 PubMed DOI PMC

Estaki M, Jiang L, Bokulich NA et al (2020) QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr Protoc Bioinform. https://doi.org/10.1002/cpbi.100 DOI

Flemming H, Wingender J (2010) The Biofilm Matrix Nat Publ Gr 8:623–633. https://doi.org/10.1038/nrmicro2415 DOI

Fünfhaus A, Göbel J, Ebeling J et al (2018) Swarming motility and biofilm formation of Paenibacillus larvae, the etiological agent of American Foulbrood of honey bees (Apis mellifera). Sci Rep 8:8840. https://doi.org/10.1038/s41598-018-27193-8 PubMed DOI PMC

Gall I, Herzberg M, Oren Y (2013) The effect of electric fields on bacterial attachment to conductive surfaces. Soft Matter 9:2443–2452. https://doi.org/10.1039/c2sm27270a DOI

Garcia D, Mayfield CK, Leong J et al (2020) Early adherence and biofilm formation of Cutibacterium acnes (formerly Propionibacterium acnes) on spinal implant materials. Spine J 20:981–987. https://doi.org/10.1016/j.spinee.2020.01.001 PubMed DOI

Gibbs SG, Sayles H, Colbert EM, Hewlett A (2014) Evaluation of the relationship between the adenosine triphosphate (ATP) bioluminescence assay and the presence of Bacillus anthracis spores and vegetative cells. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph110605708 PubMed DOI PMC

Giladi M, Porat Y, Blatt A et al (2010) Microbial growth inhibition by alternating electric fields in mice with Pseudomonas aeruginosa lung infection. Antimicrob Agents Chemother 54:3212–3218. https://doi.org/10.1128/AAC.01841-09 PubMed DOI PMC

Gomes IB, Simões M, Simões LC (2020) Copper surfaces in biofilm control. Nanomaterials 10:1–21. https://doi.org/10.3390/nano10122491 DOI

Griffith C (2016) Surface sampling and the detection of contamination. Handbook of hygiene control in the food industry. Woodhead Publishing, pp 673–696 DOI

Gyurova AY, Zhivkov AM (2009) Influence of the medium electrolyte concentration on the electric polarizability of bacteria Escherichia coli in presence of ethanol. Colloids Surf B Biointerfaces 74:23–27. https://doi.org/10.1016/j.colsurfb.2009.06.017 PubMed DOI

Huson DH, Albrecht B, Bağci C et al (2018) MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biol Direct 13:1–17. https://doi.org/10.1186/s13062-018-0208-7 DOI

Jarosz M, Grudzień J, Kamiński K et al (2019) Novel bioelectrodes based on polysaccharide modified gold surfaces and electrochemically active Lactobacillus rhamnosus GG biofilms. Electrochim Acta 296:999–1008. https://doi.org/10.1016/j.electacta.2018.11.154 DOI

Joyce E, Mason TJ (2014) Ultrasound for the disinfection of water. Ultrasound disinfect water using flow. Syst Eadaoin GPE-EPIC Congr 2009, Venice, Italy, pp 1–6

Keegan KP, Glass EM, Meyer F (2016) MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods Mol Biol 1399:207–233. https://doi.org/10.1007/978-1-4939-3369-3_13 PubMed DOI

Kim IS, Lee J, Kim SJ et al (2014) Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane. Environ Technol (united Kingdom) 35:125–136. https://doi.org/10.1080/09593330.2013.817445 DOI

Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J 5:1086–1094. https://doi.org/10.1038/ismej.2010.207 PubMed DOI PMC

Lehtola MJ, Miettinen IT, Keinänen MM et al (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res 38:3769–3779. https://doi.org/10.1016/j.watres.2004.06.024 PubMed DOI

Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. https://doi.org/10.1038/nrmicro3028 PubMed DOI

Mathews S, Hans M, Mücklich F, Solioz M (2013) Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl Environ Microbiol 79:2605–2611. https://doi.org/10.1128/AEM.03608-12 PubMed DOI PMC

Mohan V, Devi KS, Srinivasan R, Sushamani K (2014) In-vitro evaluation of chromium tolerant plant growth promoting bacteria from tannery sludge sample, Dindugal, Tamil Nadu. India 3:336–344

Nithila SDR, Anandkumar B, Vanithakumari SC et al (2014) Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium. Ultrason Sonochem 21:189–199. https://doi.org/10.1016/j.ultsonch.2013.06.010 PubMed DOI

Polyakov P, Merlin J, Abe Y, Ghigo J (2011) Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic. Stress. https://doi.org/10.1371/journal.pone.0020066 DOI

Poole K (2017) At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance. Trends Microbiol 25:820–832. https://doi.org/10.1016/j.tim.2017.04.010 PubMed DOI

Rosenberg M, Azevedo NF, Ivask A (2019) Propidium iodide staining underestimates viability of adherent bacterial cells. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-42906-3 DOI

Salta M, Wharton JA, Blache Y et al (2013) Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol 15:2879–2893. https://doi.org/10.1111/1462-2920.12186 PubMed DOI

Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x PubMed DOI

Sherif MM, Elkhatib WF, Khalaf WS et al (2021) Multidrug resistant Acinetobacter baumannii biofilms: evaluation of phenotypic–genotypic association and susceptibility to cinnamic and gallic acids. Front Microbiol. https://doi.org/10.3389/fmicb.2021.716627 PubMed DOI PMC

Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506. https://doi.org/10.1016/S0168-6445(00)00036-X PubMed DOI

Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q (2015) Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 15:1–9. https://doi.org/10.1186/s12866-015-0376-x DOI

Therasa JJ, Vishwakarma V, George RP et al (2010) Reducing biofouling on titanium surface by electroless deposition of antibacterial copper nanofilms. Curr Sci 99:1079–1083

Tong X, Leung MHY, Shen Z et al (2021) Metagenomic insights into the microbial communities of inert and oligotrophic outdoor pier surfaces of a coastal city. Microbiome 9:1–15. https://doi.org/10.1186/s40168-021-01166-y DOI

van Arkel A, Willemsen I, Kluytmans J (2021) The correlation between ATP measurement and microbial contamination of inanimate surfaces. Antimicrob Resist Infect Control. https://doi.org/10.1186/s13756-021-00981-0 PubMed DOI PMC

Wade S (2022) Microbiologically influenced corrosion of copper and its alloys in anaerobic aqueous environments: a review. Front Microbiol 13:1–10. https://doi.org/10.3389/fmicb.2022.806688 DOI

Zhang WP, Wang Y, Tian RM et al (2014) Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system. Sci Rep 4:1–7. https://doi.org/10.1038/srep06647 DOI

Zhang Y, Ma Y, Zhang R et al (2019) Metagenomic resolution of functional diversity in copper surface-associated marine biofilms. Front Microbiol 10:1–13. https://doi.org/10.3389/fmicb.2019.02863 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...