Response of beech and fir to different light intensities along the Carpathian and Dinaric Mountains
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38779076
PubMed Central
PMC11109408
DOI
10.3389/fpls.2024.1380275
Knihovny.cz E-zdroje
- Klíčová slova
- Carpathian Mountains, Dinaric Mountains, beech, light response, precipitation, silver fir, temperature,
- Publikační typ
- časopisecké články MeSH
Predicting global change mitigations based on environmental variables, like temperature and water availability, although yielding insightful hypothesis still lacks the integration of environmental responses. Physiological limits should be assessed to obtain a complete representation of a species' fundamental niche. Detailed ecophysiological studies on the response of trees along the latitudinal gradient are rare. They could shed light on the behaviour under different light intensities and other studied traits. The forests of the Dinaric Mountains and the Carpathians represent the largest contiguous forest complexes in south-eastern Europe. In uneven-aged Carpathian (8 plots) and Dinaric Mountain (11 plots) forests, net assimilation (Amax) and maximum quantum yield (Φ) were measured for beech and fir in three predefined light intensity categories according to the indirect site factor (ISF%) obtained by the analysis of hemispherical photographs in managed and old growth forests, all located above 800 m a.s.l. The measurements were carried out under fixed environmental conditions in each light category per plot for three consecutive years. Data from the last 50-year average period from the CRU TS 4.01 dataset were used for the comparison between Amax, Φ, and climate. The highest Φ for beech were observed in the central part of the Dinaric Mountains and in the south westernmost and northwesternmost part of the Carpathians for both beech and fir, while they were highest for fir in the Dinaric Mountains in the northwesternmost part of the study area. The Φ-value of beech decreased in both complexes with increasing mean annual temperature and was highest in the open landscape. For fir in the Carpathians, Φ decreased with increasing mean annual temperature, while in the Dinaric Mountains it increased with higher temperature and showed a more scattered response compared to the Carpathians. Short-term ecophysiological responses of beech and fir were consistent to long-term radial growth observations observed on same locations. The results may provide a basis and an indication of the future response of two tree species in their biogeographical range to climate change in terms of competitiveness, existence and consequently forest management decisions.
Department of Silviculture Faculty of Forestry and Wood technology Mendel University Brno Czechia
Department of Yield and Silviculture Slovenian Forestry Institute Ljubljana Slovenia
Zobrazit více v PubMed
Adamič P. C., Levanič T., Hanzu M., Čater M. (2023). Growth response of European beech (Fagus sylvatica L.) and Silver Fir (Abies alba Mill.) to climate factors along the Carpathian massive. Forests 14, 1318. doi: 10.3390/f14071318 DOI
Alba-Sánchez F., López-Sáez J. A., Pando B. B., Linares J. C., Nieto-Lugilde D., López-Merino L. (2010). Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Diversity Distributions 16, 214–228. doi: 10.1111/j.1472-4642.2010.00636.x DOI
Aussenac G. (2002). Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann. For. Sci. 59, 823–832. doi: 10.1051/forest:2002080 DOI
Bachofen C., D’Odorico P., Buchmann N. (2020). Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192, 323–339. doi: 10.1007/s00442-019-04583-x PubMed DOI
Bohn U., Gollub G., Hettwer C., Weber H., Neuhäuslová Z., Raus T., et al. . (2000). Karte der natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe. Maßstab/Scale 1: 2,500,000.
Boncina A., Cavlovic J., Curovic M., Govedar Z., Klopcic M., Medarevic M. (2013). A comparative analysis of recent changes in Dinaric uneven-aged forests of the NW Balkans. Forestry 87, 71–84. doi: 10.1093/forestry/cpt038 DOI
Bošela M., Lukac M., Castagneri D., Sedmák R., Biber P., Carrer M., et al. . (2018). Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci. Total Environ. 615, 1460–1469. doi: 10.1016/j.scitotenv.2017.09.092 PubMed DOI
Bošela M., Popa I., Gömöry D., Longauer R., Tobin B., Kyncl J., et al. . (2016). Effects of post-glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir. J. Ecol. 104, 716–724. doi: 10.1111/1365-2745.12561 DOI
Büntgen U., Tegel W., Kaplan J. O., Schaub M., Hagedorn F., Bürgi M., et al. . (2014). Placing unprecedented recent fir growth in a European-wide and Holocene-long context. Front. Ecol. Environ. 12, 100–106. doi: 10.1890/130089 DOI
Carrer M., Nola P., Motta R., Urbinati C. (2010). Contrasting tree-ring growth to climate responses of Abies alba toward the southern limit of its distribution area. Oikos 119, 1515–1525. doi: 10.1111/j.1600-0706.2010.18293.x DOI
Čater M. (2021). Response and mortality of beech, fir, spruce and sycamore to rapid light exposure after large-scale disturbance. For. Ecol. Manage. 498, 119554. doi: 10.1016/j.foreco.2021.119554 DOI
Čater M., Diaci J. (2017). Divergent response of European beech, silver fir and Norway spruce advance regeneration to increased light levels following natural disturbance. For. Ecol. Manage. 399, 206–212. doi: 10.1016/j.foreco.2017.05.042 DOI
Čater M., Diaci J., Roženbergar D. (2014). Gap size and position influence variable response of Fagus sylvatica L. and Abies alba Mill. For. Ecol. Manage. 325, 128–135. doi: 10.1016/j.foreco.2014.04.001 DOI
Čater M., Levanič T. (2013). Response of Fagus sylvatica L. and Abies alba Mill. in different silvicultural systems of the high Dinaric karst. For. Ecol. Manage. 289, 278–288. doi: 10.1016/j.foreco.2012.10.021 DOI
Čater M., Levanič T. (2019). Beech and silver fir’s response along the Balkan’s latitudinal gradient. Sci. Rep. 9, 16269. doi: 10.1038/s41598-019-52670-z PubMed DOI PMC
Caudullo G., Welk E., ASan Miguel Ayanz J. (2017). Chorological maps for the main European woody species. Data In Brief 12, 662–666. doi: 10.1016/j.dib.2017.05.007 PubMed DOI PMC
Čavlović J., Bončina A., Božić M., Goršić E., Simončič T., Teslak K. (2015). Depression and growth recovery of silver fir in uneven-aged Dinaric forests in Croatia from 1901 to 2001. Forestry: Int. J. For. Res. 88, 586–598. doi: 10.1093/forestry/cpv026 DOI
Collet C., Lanter O., Pardos M. (2001). Effects of canopy opening on height and diameter growth in naturally regenerated beech seedlings. Ann. For. Sci. 58, 127–134. doi: 10.1051/forest:2001112 DOI
Darenova E., Adamič P. C., Čater M. (2024). Effect of temperature, water availability, and soil properties on soil CO2 efflux in beech-fir forests along the Carpathian Mts. Catena. doi: 10.1016/j.catena.2024.107974 DOI
De Frenne P., Graae B. J., Rodríguez-Sánchez F., Kolb A., Chabrerie O., Decocq G., et al. . (2013). Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795. doi: 10.1111/1365-2745.12074 DOI
Diaci J., Roženbergar D., Anić I., Mikac S., Saniga M., Kucibel S., et al. . (2011). Structural dynamics and synchronous silver fir decline in mixed old-growth mountain forests in Eastern and Southeastern Europe. Forestry 84, 479–491. doi: 10.1093/forestry/cpr030 DOI
Dillaway D. N., Kruger E. L. (2010). Thermal acclimation of photosynthesis: a comparison of boreal and temperate tree species along a latitudinal transect. Plant Cell Environ. 33, 888–899. doi: 10.1111/j.1365-3040.2010.02114.x PubMed DOI
Di Pasquale G., Buonincontri M. P., Allevato E., Saracino A. (2014). Human-derived landscape changes on the northern Etruria coast (western Italy) between Roman times and the late Middle Ages. Holocene 24, 1491–1502. doi: 10.1177/0959683614544063 DOI
Dobrowolska D., Bončina A., Klumpp R. (2017). Ecology and silviculture of silver fir (Abies alba Mill.): A review. J. For. Res. 22, 326–335. doi: 10.1080/13416979.2017.1386021 DOI
Ellenberg H. H. (1988). Vegetation ecology of central Europe (Cambridge: Cambridge University Press; ).
Ficko A., Poljanec A., Boncina A. (2011). Do changes in spatial distribution, structure and abundance of silver fir (Abies alba Mill.) indicate its decline? For. Ecol. Manage. 261, 844–854. doi: 10.1016/j.foreco.2010.12.014 DOI
Gams I. (1969). Some morphological characteristics of the dinaric karst. Geographical J. 135 (4), 563–572.
Gazol A., Camarero J. J., Gutiérrez E., Popa I., Andreu-Hayles L., Motta R., et al. . (2015). Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeography 42, 1150–1162. doi: 10.1111/jbi.12512 DOI
Giorgi F., Lionello P. (2008). Climate change projections for the Mediterranean region. Global planetary Change 63, 90–104. doi: 10.1016/j.gloplacha.2007.09.005 DOI
Golonka J., Pietsch K., Marzec P. (2018). The north european platform suture zone in poland. Geology Geophysics Environ. 44, 5–16.
Grassi G., Bagnaresi U. (2001). Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient. Tree Physiol. 21, 959–967. doi: 10.1093/treephys/21.12-13.959 PubMed DOI
Harris I., Jones P. D., Osborn T. J., Lister D. H. (2014). Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. climatology 34, 623–642. doi: 10.1002/joc.3711 DOI
Hédl R., Petřík P., Boublík K. (2011). Long-term patterns in soil acidification due to pollution in forests of the Eastern Sudetes Mountains. Environ. pollut. 159, 2586–2593. doi: 10.1016/j.envpol.2011.06.014 PubMed DOI
Hohenadl W. (1981). Untersuchungen zur natürlichen Verjüngung des Bergmischwaldes: erste Ergebnisse eines Forschungsprojekts in den ostbayerischen Kalkalpen. na.
Hukić E., Čater M., Marinšek A., Ferlan M., Kobal M., Žlindra D., et al. . (2021). Short-term impacts of harvesting intensity on the upper soil layers in high karst Dinaric fir-beech forests. Forests 12, 581. doi: 10.3390/f12050581 DOI
Ishida M. (2004). Automatic thresholding for digital hemispherical photography. Can. J. For. Res. 34, 2208–2216. doi: 10.1139/x04-103 DOI
Janík D., Adam D., Hort L., Král K., Šamonil P., Unar P., et al. . (2014). Tree spatial patterns of Abies alba and Fagus sylvatica in the Western Carpathians over 30 years. Eur. J. For. Res. 133, 1015–1028. doi: 10.1007/s10342-014-0819-1 DOI
Janík D., Král K., Adam D., Hort L., Samonil P., Unar P., et al. . (2016). Tree spatial patterns of Fagus sylvatica expansion over 37 years. For. Ecol. Manage. 375, 134–145. doi: 10.1016/j.foreco.2016.05.017 DOI
Körner C., Basler D., Hoch G., Kollas C., Lenz A., Randin C. F., et al. . (2016). Where, why and how? Explaining the low-temperature range limits of temperate tree species. J. Ecol. 104, 1076–1088. doi: 10.1111/1365-2745.12574 DOI
Krecmer V. (1967). Das mikroklima der kieferlochkahlschläge: III. und IV. Teil. Wetter und Leben 19, 107–115. 203–214.
Lambers H., Chapin F. S., Pons T. L. (1998). Plant physiological ecology (NewYork: Springer; ). doi: 10.1007/978-1-4757-2855-2 DOI
Larcher W. (2003). Physiological plant ecology: ecophysiology and stress physiology of functional groups (New York: Springer Science & Business Media; ).
Leblanc S. G., Chen J. M., Fernandes R., Deering D. W., Conley A. (2005). Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric. For. meteorology. 129, 187–207. doi: 10.1016/j.agrformet.2004.09.006 DOI
Lee H., Calvin K., Dasgupta D., Krinmer G., Mukherji A., Thorne P., et al. . (2023). Synthesis report of the IPCC Sixth Assessment Report (AR6), Longer report (Geneva, Switzerland: IPCC; ).
Lichtenthaler H. K., Ač A., Marek M. V., Kalina J., Urban O. (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Biochem. 45, 577–588. doi: 10.1016/j.plaphy.2007.04.006 PubMed DOI
Linares J. C., Camarero J. J. (2012). Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees. Eur. J. For. Res. 131, 1001–1012. doi: 10.1007/s10342-011-0572-7 DOI
Londo A. J., Messina M. G., Schoenholtz S. H. (1999). Forest harvesting effects on soil temperature, moisture, and respiration in a bottomland hardwood forest. Soil Sci. Soc Am. J. 63, 637–644. doi: 10.2136/sssaj1999.03615995006300030029x DOI
Łysik M. (2009). A 13-year change in ground-layer vegetation of Carpathian beech forests. Polish J. Ecol. 57, 47–61.
Macfarlane C., Coote M., White D. A., Adams M. A. (2000). Photographic exposure affects indirect estimation of leaf area in plantations of Eucalyptus globulus Labill. Agric. For. meteorology. 100, 155–168. doi: 10.1016/S0168-1923(99)00139-2 DOI
Maiorano L., Cheddadi R., Zimmermann N., Pellissier L., Petitpierre B., Pottier J., et al. . (2013). Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecol. Biogeography 22, 302–317. doi: 10.1111/j.1466-8238.2012.00767.x DOI
Marinšek A., Šilc U., Čarni A. (2013). Geographical and ecological differentiation of F agus forest vegetation in SE Europe. Appl. Vegetation Sci. 16, 131–147. doi: 10.1111/j.1654-109X.2012.01203.x DOI
Mauri A., De Rigo D., Caudullo G. (2016). Abies alba in Europe: distribution, habitat, usage and threats (Luxembourg: European Atlas of Forest Tree Species Publ. Off. EU; ). Available at: https://w3id.org/mtv/FISE-Comm/v01/e01493b.
Meier E. S., Edwards T. C., Jr., Kienast F., Dobbertin M., Zimmermann N. E. (2011). Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. J. Biogeography 38, 371–382. doi: 10.1111/jbi.2011.38.issue-2 DOI
Mellert K. H., Göttlein A. (2012). Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur. J. For. Res. 131, 1461–1472. doi: 10.1007/s10342-012-0615-8 DOI
Micu D. M., Dumitrescu A., Cheval S., Birsan M.-V. (2016). Climate of the Romanian carpathians (Cham, Heildelberg, New York, Dordrecht, London: Springer; ).
Mihevc A. (2010). “Geomorphology,” in Introduction to dinaric karst. Eds. Mihevc A., Prelovšek M., Zupan Hajna N. (Postojna: IZRK, Slovenska akademija znanosti in umetnosti, Ljubljana; ), 30–43.
Mirek Z., Piekos-Mirkowa H. (1992). Flora and vegetation of the polish tatra mountains. Mountain Res. Dev. 12 (2), 147–173. doi: 10.2307/3673788 DOI
Nagel T. A., Mikac S., Dolinar M., Klopčič M., Keren S., Svoboda M., et al. . (2017). The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. For. Ecol. Manage. 388, 29–42. doi: 10.1016/j.foreco.2016.07.047 DOI
Nicolini É., Caraglio Y. (2011). L’influence de divers caract??res architecturaux sur l’apparition de la fourche chez le Fagus sylvatica, en fonction de l’absence ou de la pr??sence d’un couvert. Can. J. Bot. 72, 1723–1734. doi: 10.1139/b94-213 DOI
Nobis M., Hunziker U. (2005). Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agric. For. meteorology. 128, 243–250. doi: 10.1016/j.agrformet.2004.10.002 DOI
Piedallu C., Gégout J. C., Perez V., Lebourgeois F. (2013). Soil water balance performs better than climatic water variables in tree species distribution modelling. Global Ecol. Biogeography 22, 470–482. doi: 10.1111/geb.12012 DOI
Rădulescu D. P., Săndulescu M. (1973). The plate-tectonics concept and the geological structure of the carpathians. Tectonophysics 16, 155–161. doi: 10.1016/0040-1951(73)90010-3 DOI
Robakowski P., Wyka T., Samardakiewicz S., Kierzkowski D. (2004). Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill.) seedlings under different canopies. For. Ecol. Manage. 201, 211–227. doi: 10.1016/j.foreco.2004.06.029 DOI
Rolland C., Michalet R., Desplanque C., Petetin A., Aimé S. (1999). Ecological requirements of Abies alba in the French Alps derived from dendro-ecological analysis. J. Vegetation Sci. 10, 297–306. doi: 10.2307/3237059 DOI
Šamonil P., Antolík L., Svoboda M., Adam D. (2009). Dynamics of windthrow events in a natural fir-beech forest in the Carpathian mountains. For. Ecol. Manage. 257, 1148–1156. doi: 10.1016/j.foreco.2008.11.024 DOI
Šamonil P., Vrška T. (2007). Trends and cyclical changes in natural fir-beech forests at the north-western edge of the Carpathians. Folia Geobotanica 42, 337–361. doi: 10.1007/BF02861699 DOI
Schütz J. P. (2002). Silvicultural tools to develop irregular and diverse forest structures. Forestry 75, 329–337. doi: 10.1093/forestry/75.4.329 DOI
Schütz J.-P., Saniga M., Diaci J., Vrška T. (2016). Comparing close-to-naturesilviculture with processes in pristine forests: lessons from Central Europe. Ann. For. Sci. 73, 911–921. doi: 10.1007/s13595-016-0579-9 DOI
Schwalbe E., Maas H.-G., Kenter M., Wagner S. (2009). Hemispheric image modeling and analysis techniques for solar radiation determination in forest ecosystems. Photogrammetric Eng. Remote Sens. 75, 375–384. doi: 10.14358/PERS.75.4.375 DOI
Smith D. D., Adams M. A., Salvi A. M., Krieg C. P., Ane C., McCulloh K. A., et al. . (2023). Ecophysiological adaptations shape distributions of closely related trees along a climatic moisture gradient. Nat. Commun. 14, 7173. doi: 10.1038/s41467-023-42352-w PubMed DOI PMC
Stancioiu P. T., O’Hara K. L. (2006). Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur. J. For. Res. 125, 151–162. doi: 10.1007/s10342-005-0069-3 DOI
Svenning J. C., Skov F. (2004). Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573. doi: 10.1111/j.1461-0248.2004.00614.x DOI
Tinner W., Colombaroli D., Heiri O., Henne P. D., Steinacher M., Untenecker J., et al. . (2013). The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol. Monogr. 83, 419–439. doi: 10.1890/12-2231.1 DOI
Vološčuk I. (1999). The national parks and biosphere reserves in carpathians: The last nature paradises (Tatranska Lomnica, Slovak Republic: Association of the Carpathian National Parks and Biosphere Reserves; ), 244 p.
Vrška T., Adam D., Hort L., Kolář T., Janík D. (2009). European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians—A developmental cycle or a linear trend induced by man? For. Ecol. Manage. 258, 347–356. doi: 10.1016/j.foreco.2009.03.007 DOI
Warszyńska J. (1995). The Polish Carpathians–nature, man and his activities (Kraków, Poland: Jagiellonian University Publication; ), 1–367.
Weithmann G., Paligi S. S., Schuldt B., Leuschner C. (2022). Branch xylem vascular adjustments in European beech in response to decreasing water availability across a precipitation gradient. Tree Physiol. 42, 2224–2238. doi: 10.1093/treephys/tpac080 PubMed DOI
Willner W. (2002). Syntaxonomische Revision der südmitteleuropäischen Buchenwälder Syntaxonomical revision of the beech forests of southern Central Europe. Phytocoenologia 32, 337–453. doi: 10.1127/0340-269X/2002/0032-0337 DOI
Wyka T., Robakowski P., Zytkowiak R. (2007). Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance. Tree Physiol. 27, 1293–1306. doi: 10.1093/treephys/27.9.1293 PubMed DOI
Yang F., Burzlaff T., Rennenberg H. (2022). Drought hardening of European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) seedlings in mixed cultivation. Forests 13, 1386. doi: 10.3390/f13091386 DOI
Zhang Y., Chen J. M., Miller J. R. (2005). Determining digital hemispherical photograph exposure for leaf area index estimation. Agric. For. meteorology 133, 166–181. doi: 10.1016/j.agrformet.2005.09.009 DOI