Electromechanical efficiency index of skeletal muscle and its applicability: a systematic review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu systematický přehled, časopisecké články
PubMed
38784764
PubMed Central
PMC11111854
DOI
10.3389/fbioe.2024.1398047
PII: 1398047
Knihovny.cz E-zdroje
- Klíčová slova
- EME index, athletic performance, electromyography, muscle function, rehabilitation, tensiomyography,
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
Introduction: The electromechanical efficiency of skeletal muscle represents the dissociation between electrical and mechanical events within a muscle. It has been widely studied, with varying methods for its measurement and calculation. For this reason, the purpose of this literature review was to integrate the available research to date and provide more insights about this measure. Methods: A systematic search of the literature was performed across three online databases: PubMed, ScienceDirect, and SPORTDiscus. This yielded 1284 reports, of which 10 met the inclusion criteria. Included studies have used different methods to measure the electromechanical efficiency (EME) index, including electromyography (EMG), mechanomyography and tensiomyography (TMG). Results: The EME index was used to assess muscle conditions such as muscle atrophy, pain syndromes, or to monitor rehabilitation in patients with knee problems, fatigue and the effects of exercise and rehabilitation. TMG has been shown to be one of the most reliable methods to obtain the EME index, but its use precludes obtaining the index during voluntary muscle contractions. Conclusion: Standardizing the EME index is crucial for its diverse applications in clinical, sport, and rehabilitation contexts. Future research should prioritize standardization of measurement protocols for establishing the most repeatable, and reliable approach that can be used for inter-individual comparisons or for assessing an individual for multiple times over a longer period. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023440333 Identifier: CRD42023440333.
Faculty of Sports Studies Masaryk University Brno Czechia
Institute of Kinesiology Faculty of Sport University of Ljubljana Ljubljana Slovenia
Science and Research Centre Koper Institute for Kinesiology Research Koper Slovenia
Zobrazit více v PubMed
Anders J. P. V., Smith C. M., Keller J. L., Hill E. C., Housh T. J., Schmidt R. J., et al. (2019). Inter- and intra-individual differences in EMG and MMG during maximal, bilateral, dynamic leg extensions. Sports 7 (7), 175. 10.3390/sports7070175 PubMed DOI PMC
Barry D., Gordon K., Hinton G. (1990). Acoustic and surface EMG diagnosis of pediatric muscle disease. Muscle Nerve 13, 286–290. 10.1002/mus.880130403 PubMed DOI
Beck T. W., Housh T. J., Cramer J. T., Weir J. P., Johnson G. O., Coburn J. W., et al. (2005). Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. Biomed. Eng. OnLine 4, 67. 10.1186/1475-925X-4-67 PubMed DOI PMC
Berg H. E., Larsson L., Tesch P. A. (1997). Lower limb skeletal muscle function after 6 wk of bed rest. J. Appl. Physiology 82 (1), 182–188. 10.1152/jappl.1997.82.1.182 PubMed DOI
Ebersole K. T., Malek D. M. (2008). Fatigue and the electromechanical efficiency of the vastus medialis and vastus lateralis muscles. J. Athl. Train. 43 (2), 152–156. 10.4085/1062-6050-43.2.152 PubMed DOI PMC
Farina D., Enoka R. M. (2023). Evolution of surface electromyography: from muscle electrophysiology towards neural recording and interfacing. J. Electromyogr. Kinesiol. 71, 102796. 10.1016/J.JELEKIN.2023.102796 PubMed DOI
Fukuhara S., Kawashima T., Oka H. (2021). Indices reflecting muscle contraction performance during exercise based on a combined electromyography and mechanomyography approach. Sci. Rep. 11 (1), 21208. 10.1038/S41598-021-00671-2 PubMed DOI PMC
Grosprêtre S., Gimenez P., Martin A. (2018). Neuromuscular and electromechanical properties of ultra-power athletes: the traceurs. Eur. J. Appl. Physiology 118 (7), 1361–1371. 10.1007/s00421-018-3868-1 PubMed DOI
Herda T. J., Ryan E. D., Beck T. W., Costa P. B., DeFreitas J. M., Stout J. R., et al. (2008). Reliability of mechanomyographic amplitude and mean power frequency during isometric step and ramp muscle actions. J. Neurosci. Methods 171 (1), 104–109. 10.1016/j.jneumeth.2008.02.017 PubMed DOI
Ibitoye M. O., Hamzaid N. A., Zuniga J. M., Wahab A. K. A. (2014). Mechanomyography and muscle function assessment: a review of current state and prospects. Clin. Biomech. (Bristol, Avon) 29 (6), 691–704. 10.1016/J.CLINBIOMECH.2014.04.003 PubMed DOI
Ioi H., Kawakatsu M., Nakata S., Nakasima A., Counts A. L. (2006). Mechanomyogram and electromyogram analyses for investigating human masseter muscle fatigue. Orthod. Waves 65 (1), 15–20. 10.1016/j.odw.2005.12.002 PubMed DOI
Jaskólski A., Andrzejewska R., Marusiak J., Kisiel-Sajewicz K., Jaskólska A. (2007). Similar response of agonist and antagonist muscles after eccentric exercise revealed by electromyography and mechanomyography. J. Electromyogr. Kinesiol. 17 (5), 568–577. 10.1016/j.jelekin.2006.05.002 PubMed DOI
Layzer R. B. (1990). 3 Muscle metabolism during fatigue and work. Baillière’s Clin. Endocrinol. Metabolism 4 (3), 441–459. 10.1016/S0950-351X(05)80064-3 PubMed DOI
Lohr C., Schmidt T., Medina-Porqueres I., Braumann K. M., Reer R., Porthun J. (2019). Diagnostic accuracy, validity, and reliability of Tensiomyography to assess muscle function and exercise-induced fatigue in healthy participants. A systematic review with meta-analysis. J. Electromyogr. Kinesiol. 47, 65–87. 10.1016/J.JELEKIN.2019.05.005 PubMed DOI
Macgregor L. J., Hunter A. M., Orizio C., Fairweather M. M., Ditroilo M. (2018). Assessment of skeletal muscle contractile properties by radial displacement: the case for tensiomyography. Sports Med. 48 (7), 1607–1620. 10.1007/s40279-018-0912-6 PubMed DOI PMC
Madeleine P., Arendt-Nielsen L. (2005). Experimental muscle pain increases mechanomyographic signal activity during sub-maximal isometric contractions. J. Electromyogr. Kinesiol. 15 (1), 27–36. 10.1016/j.jelekin.2004.06.006 PubMed DOI
Madeleine P., Bajaj P., Søgaard K., Arendt-Nielsen L. (2001). Mechanomyography and electromyography force relationships during concentric, isometric and eccentric contractions. J. Electromyogr. Kinesiol. 11 (2), 113–121. 10.1016/S1050-6411(00)00044-4 PubMed DOI
National Heart Lung, and Blood Institute (2021) NHLBI: Quality assessment tool for observational cohort and crosssectional studies. Available at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (Accessed July 28, 2023)
Oka H., Konishi Y., Kitawaki T. (2014). Simultaneous measurement of displacement-MMG/EMG during exercise. SICE J. Control, Meas. Syst. Integration 7 (6), 332–336. 10.9746/JCMSI.7.332 DOI
Orizio C., Esposito F., Sansone V., Parrinello G., Meola G., Veicsteinas A. (1997). Muscle surface mechanical and electrical activities in myotonic dystrophy. Electromyogr. Clin. Neurophysiology 37 (4), 231–239. PubMed
Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj-British Med. J. 372, n71. 10.1136/bmj.n71 PubMed DOI PMC
Paravlic A. H., Pisot R., Simunic B. (2020). Muscle-specific changes of lower extremities in the early period after total knee arthroplasty: insight from tensiomyography. J. Musculoskelet. Neuronal Interact. 20 (3), 390–397. PubMed PMC
Paravlić D., Zubac D., Šimunič B. (2017). Reliability of the twitch evoked skeletal muscle electromechanical efficiency: a ratio between tensiomyogram and M-wave amplitudes. J. Electromyogr. Kinesiol. 37, 108–116. 10.1016/j.jelekin.2017.10.002 PubMed DOI
Sakai Y., Matsui H., Ito S., Hida T., Ito K., Koshimizu H., et al. (2019). Electrophysiological function of the lumbar multifidus and erector spinae muscles in elderly patients with chronic low back pain. Clin. Spine Surg. 32 (1), E13–E19. 10.1097/BSD.0000000000000709 PubMed DOI
Stokes M. J. (1993). Acoustic myography: applications and considerations in measuring muscle performance. Isokinet. Exerc. Sci. 3 (1), 4–15. 10.3233/IES-1993-3101 DOI
Uwamahoro R., Sundaraj K., Subramaniam I. D. (2021). Assessment of muscle activity using electrical stimulation and mechanomyography: a systematic review. Biomed. Eng. OnLine 20 (1), 1. 10.1186/S12938-020-00840-W PubMed DOI PMC
Valencic V., Knez N., Simunic B. (2001). Tenziomiography: detection of skeletal muscle response by means of radial muscle belly displacement. Fac. Electr. Eng. 1, 1–10.
Zubac D., Paravlić A., Koren K., Felicita U., Bostjan S. (2019). Plyometric exercise improves jumping performance and skeletal muscle contractile properties in seniors. J. Musculoskelet. Neuronal Interact. 19 (1), 38–49. PubMed PMC