Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy

. 2024 May 03 ; 13 (5) : . [epub] 20240503

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38786147

Grantová podpora
ISR Pfizer Grant 69506665 Pfizer
Institutional Program of Charles University in Prague (UNCE/MED/007) Charles University
Charles University project Cooperatio - Pediatric sciences Charles University
Charles University project Cooperatio - Pharmaceutical sciences Charles University

This study aimed to characterize the impact of extracorporeal membrane oxygenation (ECMO) on the pharmacokinetics (PK) of meropenem in neonates and children and to provide recommendations for meropenem dosing in this specific population of patients. Therapeutic drug monitoring (152 meropenem plasma concentrations) data from 45 patients (38 received ECMO) with a body weight (BW) of 7.88 (3.62-11.97) kg (median (interquartile range)) and postnatal age of 3 (0-465) days were collected. The population PK analysis was performed using NONMEM V7.3.0. Monte Carlo simulations were performed to assess the probability of target achievement (PTA) for 40% of time the free drug remained above the minimum inhibitory concentration (fT > MIC) and 100% fT > MIC. BW was found to be a significant covariate for the volume of distribution (Vd) and clearance (CL). Additionally, continuous renal replacement therapy (CRRT) was associated with a two-fold increase in Vd. In the final model, the CL and Vd for a typical patient with a median BW of 7.88 kg that was off CRRT were 1.09 L/h (RSE = 8%) and 3.98 L (14%), respectively. ECMO did not affect meropenem PK, while superimposed CRRT significantly increased Vd. We concluded that current dosing regimens provide acceptably high PTA for MIC ≤ 4 mg/L for 40% fT > MIC, but individual dose adjustments are needed for 100% fT > MIC.

Zobrazit více v PubMed

Bartlett R.H., Gazzaniga A.B., Jefferies M.R., Huxtable R.F., Haiduc N.J., Fong S.W. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. J. Extra Corpor. Technol. 1979;11:26–41. doi: 10.1051/ject/197911126. PubMed DOI

Wildschut E.D., van Saet A., Pokorna P., Ahsman M.J., Van den Anker J.N., Tibboel D. The impact of extracorporeal life support and hypothermia on drug disposition in critically ill infants and children. Pediatr. Clin. North. Am. 2012;59:1183–1204. doi: 10.1016/j.pcl.2012.07.013. PubMed DOI PMC

Shekar K., Fraser J.F., Smith M.T., Roberts J.A. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J. Crit. Care. 2012;27:741.e9–741.e18. doi: 10.1016/j.jcrc.2012.02.013. PubMed DOI

Zeilmaker G.A., Pokorna P., Mian P., Wildschut E.D., Knibbe C.A., Krekels E.H., Allegaert K., Tibboel D. Pharmacokinetic considerations for pediatric patients receiving analgesia in the intensive care unit; targeting postoperative, ECMO and hypothermia patients. Expert. Opin. Drug Metab. Toxicol. 2018;14:417–428. doi: 10.1080/17425255.2018.1461836. PubMed DOI

Raffaeli G., Allegaert K., Koch B., Cavallaro G., Mosca F., Tibboel D., Wildschut E.D. In vitro adsorption of analgosedative drugs in new extracorporeal membrane oxygenation circuits. Pediatr. Crit. Care Med. 2018;19:e251–e258. doi: 10.1097/PCC.0000000000001484. PubMed DOI

Wildschut E., Ahsman M., Allegaert K., Mathot R., Tibboel D. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36:2109–2116. doi: 10.1007/s00134-010-2041-z. PubMed DOI PMC

Michalicková D., Pokorná P., Tibboel D., Slanar O., Knibbe C.A., Krekels E.H. Rapid increase in clearance of phenobarbital in neonates on extracorporeal membrane oxygenation: A pilot retrospective population pharmacokinetic analysis. Pediatr. Crit. Care Med. 2020;21:e707–e715. doi: 10.1097/PCC.0000000000002402. PubMed DOI

Cohen-Wolkowiez M., Poindexter B., Bidegain M., Weitkamp J.-H., Schelonka R.L., Randolph D.A., Ward R.M., Wade K., Valencia G., Burchfield D. Safety and effectiveness of meropenem in infants with suspected or complicated intra-abdominal infections. Clin. Infect. Dis. 2012;55:1495–1502. doi: 10.1093/cid/cis758. PubMed DOI PMC

Huttner A., Harbarth S., Hope W.W., Lipman J., Roberts J.A. Therapeutic drug monitoring of the β-lactam antibiotics: What is the evidence and which patients should we be using it for? J. Antimicrob. Chemother. 2015;70:3178–3183. doi: 10.1093/jac/dkv201. PubMed DOI

Rapp M., Urien S., Foissac F., Béranger A., Bouazza N., Benaboud S., Bille E., Zheng Y., Gana I., Moulin F. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur. J. Clin. Pharmacol. 2020;76:61–71. doi: 10.1007/s00228-019-02761-7. PubMed DOI

Drusano G. Meropenem: Laboratory and clinical data. Clin. Microbiol. Infec. 1997;3:4S51–54S59. doi: 10.1016/S1198-743X(14)65034-5. PubMed DOI

van den Anker J.N., Pokorna P., Kinzig-Schippers M., Martinkova J., de Groot R., Drusano G., Sorgel F. Meropenem pharmacokinetics in the newborn. Antimicrob. Agents Chemother. 2009;53:3871–3879. doi: 10.1128/AAC.00351-09. PubMed DOI PMC

Cies J.J., Moore W.S., Enache A., Chopra A. Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children. J. Pediatr. Pharmacol. Ther. 2017;22:276–285. doi: 10.5863/1551-6776-22.4.276. PubMed DOI PMC

Germovsek E., Lutsar I., Kipper K., Karlsson M.O., Planche T., Chazallon C., Meyer L., Trafojer U.M., Metsvaht T., Fournier I. Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: Results from the NeoMero studies. J. Antimicrob. Chemother. 2018;73:1908–1916. doi: 10.1093/jac/dky128. PubMed DOI PMC

Saito J., Shoji K., Oho Y., Kato H., Matsumoto S., Aoki S., Nakamura H., Ogawa T., Hasegawa M., Yamatani A. Population pharmacokinetics and pharmacodynamics of meropenem in critically ill pediatric patients. Antimicrob. Agents Chemother. 2021;65:10–128. doi: 10.1128/aac.01909-20. PubMed DOI PMC

Thy M., Urien S., Bouazza N., Foissac F., Gana I., Bille E., Béranger A., Toubiana J., Berthaud R., Lesage F. Meropenem population pharmacokinetics and dosing regimen optimization in critically ill children receiving continuous renal replacement therapy. Clin. Pharmacokinet. 2022;61:1609–1621. doi: 10.1007/s40262-022-01179-2. PubMed DOI

Yonwises W., Wacharachaisurapol N., Anugulruengkitt S., Maimongkol P., Treyaprasert W. Population pharmacokinetics of meropenem in critically ill infant patients. Int. J. Infect. Dis. 2021;111:58–64. doi: 10.1016/j.ijid.2021.08.031. PubMed DOI

Yalcin N., Sürmelioğlu N., Allegaert K. Population pharmacokinetics in critically ill neonates and infants undergoing extracorporeal membrane oxygenation: A literature review. BMJ Paediatr. Open. 2022;6:e001512. doi: 10.1136/bmjpo-2022-001512. PubMed DOI PMC

Tan W.W., Watt K.M., Boakye-Agyeman F., Cohen-Wolkowiez M., Mok Y.H., Yung C.F., Chan Y.H. Optimal dosing of meropenem in a small cohort of critically ill children receiving continuous renal replacement therapy. J. Clin. Pharmacol. 2021;61:744–754. doi: 10.1002/jcph.1798. PubMed DOI PMC

Wang Y., Chen W., Huang Y., Wang G., Li Z., Yan G., Chen C., Lu G. Optimized dosing regimens of meropenem in septic children receiving extracorporeal life support. Front. Pharmacol. 2021;12:699191. doi: 10.3389/fphar.2021.699191. PubMed DOI PMC

Zylbersztajn B., Parker S., Navea D., Izquierdo G., Ortiz P., Torres J.P., Fajardo C., Diaz R., Valverde C., Roberts J. Population pharmacokinetics of vancomycin and meropenem in pediatric extracorporeal membrane oxygenation support. Front. Pharmacol. 2021;12:709332. doi: 10.3389/fphar.2021.709332. PubMed DOI PMC

Cies J.J., Moore W.S., Conley S.B., Dickerman M.J., Small C., Carella D., Shea P., Parker J., Chopra A. Pharmacokinetics of continuous infusion meropenem with concurrent extracorporeal life support and continuous renal replacement therapy: A case report. J. Pediatr. Pharmacol. Ther. 2016;21:92–97. doi: 10.5863/1551-6776-21.1.92. PubMed DOI PMC

Jabareen A., Nassar L., Karasik M., Efrati E., Hadash A., Kassis I., Kurnik D. Individual meropenem clearance in infants on ECMO and CVVHDF is difficult to predict: A case report and review of the literature. Pediatr. Infect. Dis. J. 2022;41:117–120. doi: 10.1097/INF.0000000000003354. PubMed DOI

Saito J., Shoji K., Oho Y., Aoki S., Matsumoto S., Yoshida M., Nakamura H., Kaneko Y., Hayashi T., Yamatani A. Meropenem pharmacokinetics during extracorporeal membrane oxygenation and continuous haemodialysis: A case report. J. Glob. Antimicrob. Resist. 2020;22:651–655. doi: 10.1016/j.jgar.2020.04.029. PubMed DOI

Wang Y., Li Z., Chen W., Yan G., Wang G., Lu G., Chen C. Pharmacokinetics of meropenem in children with sepsis undergoing extracorporeal life support: A prospective observational study. J. Clin. Pharm. Ther. 2021;46:754–761. doi: 10.1111/jcpt.13344. PubMed DOI PMC

Cies J.J., Nikolos P., Moore W.S., Giliam N., Low T., Marino D., Deacon J., Enache A., Chopra A. Oxygenator impact on meropenem/vaborbactam in extracorporeal membrane oxygenation circuits. Perfusion. 2022;37:729–737. doi: 10.1177/02676591211018985. PubMed DOI

Zhang Y., Hu H., Zhang Q., Ou Q., Zhou H., Sha T., Zeng Z., Wu J., Lu J., Chen Z. Effects of ex vivo extracorporeal membrane oxygenation circuits on sequestration of antimicrobial agents. Front. Med. 2021;8:748769. doi: 10.3389/fmed.2021.748769. PubMed DOI PMC

Raina R., Sethi S.K., Wadhwani N., Vemuganti M., Krishnappa V., Bansal S.B. Fluid overload in critically ill children. Front. Pediatr. 2018;6:306. doi: 10.3389/fped.2018.00306. PubMed DOI PMC

Ahn H.C., Frymoyer A., Boothroyd D.B., Bonifacio S., Sutherland S.M., Chock V.Y. Acute kidney injury in neonates with hypoxic ischemic encephalopathy based on serum creatinine decline compared to KDIGO criteria. Pediatr. Nephrol. 2024. pp. 1–8. PubMed

Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012;120:c179–c184. doi: 10.1159/000339789. PubMed DOI

Kuai Y., Li M., Chen J., Jiang Z., Bai Z., Huang H., Wei L., Liu N., Li X., Lu G. Comparison of diagnostic criteria for acute kidney injury in critically ill children: A multicenter cohort study. Crit. Care. 2022;26:207. doi: 10.1186/s13054-022-04083-0. PubMed DOI PMC

Selewski D.T., Cornell T.T., Heung M., Troost J.P., Ehrmann B.J., Lombel R.M., Blatt N.B., Luckritz K., Hieber S., Gajarski R. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. Intensive Care Med. 2014;40:1481–1488. doi: 10.1007/s00134-014-3391-8. PubMed DOI

Wang H.E., Jain G., Glassock R.J., Warnock D.G. Comparison of absolute serum creatinine changes versus Kidney Disease: Improving Global Outcomes consensus definitions for characterizing stages of acute kidney injury. Nephrol. Dial. Transplant. 2013;28:1447–1454. doi: 10.1093/ndt/gfs533. PubMed DOI PMC

Wu Y.-E., Kou C., Li X., Tang B.-H., Yao B.-F., Hao G.-X., Zheng Y., van den Anker J., You D.-P., Shen A.-D. Developmental Population Pharmacokinetics-Pharmacodynamics of Meropenem in Chinese Neonates and Young Infants: Dosing Recommendations for Late-Onset Sepsis. Children. 2022;9:1998. doi: 10.3390/children9121998. PubMed DOI PMC

Kongthavonsakul K., Lucksiri A., Eakanunkul S., Roongjang S., na Ayuthaya S.I., Oberdorfer P. Pharmacokinetics and pharmacodynamics of meropenem in children with severe infection. Int. J. Antimicrob. Agents. 2016;48:151–157. doi: 10.1016/j.ijantimicag.2016.04.025. PubMed DOI

Jang S.M., Awdishu L. Drug dosing considerations in continuous renal replacement therapy. Semin. Dial. 2021;34:480–488. doi: 10.1111/sdi.12972. PubMed DOI

Selistre L., Rabilloud M., Cochat P., de Souza V., Iwaz J., Lemoine S., Beyerle F., Poli-de-Figueiredo C.E., Dubourg L. Comparison of the Schwartz and CKD-EPI equations for estimating glomerular filtration rate in children, adolescents, and adults: A retrospective cross-sectional study. PLoS Med. 2016;13:e1001979. doi: 10.1371/journal.pmed.1001979. PubMed DOI PMC

Grapow M.T., von Wattenwyl R., Guller U., Beyersdorf F., Zerkowski H.-R. Randomized controlled trials do not reflect reality: Real-world analyses are critical for treatment guidelines! J. Thorac. Cardiovasc. Surg. 2006;132:5–7. doi: 10.1016/j.jtcvs.2006.03.035. PubMed DOI

[(accessed on 30 December 2017)]. Available online: https://eped.se/

Huang L., Haagensen J., Verotta D., Lizak P., Aweeka F., Yang K. Determination of meropenem in bacterial media by LC–MS/MS. J. Chromatogr. B. 2014;961:71–76. doi: 10.1016/j.jchromb.2014.05.002. PubMed DOI PMC

Pfaller M., Castanheira M., Diekema D., Messer S., Moet G., Jones R. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. J. Clin. Microbiol. 2010;48:1592–1599. doi: 10.1128/JCM.02445-09. PubMed DOI PMC

Lindbom L., Pihlgren P., Jonsson N. PsN-Toolkit—A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput. Methods Programs Biomed. 2005;79:241–257. doi: 10.1016/j.cmpb.2005.04.005. PubMed DOI

Lindbom L., Ribbing J., Jonsson E.N. Perl-speaks-NONMEM (PsN)—A Perl module for NONMEM related programming. Comput. Methods Programs Biomed. 2004;75:85–94. doi: 10.1016/j.cmpb.2003.11.003. PubMed DOI

Schwartz G.J., Brion L.P., Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr. Clin. North. Am. 1987;34:571–590. doi: 10.1016/S0031-3955(16)36251-4. PubMed DOI

Schwartz G.J., Feld L.G., Langford D.J. A simple estimate of glomerular filtration ratein full-term infants during the first year of life. J. Pediatr. 1984;104:849–854. doi: 10.1016/S0022-3476(84)80479-5. PubMed DOI

Comets E., Brendel K., Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: The npde add-on package for R. Comput. Methods Programs. 2008;90:154–166. doi: 10.1016/j.cmpb.2007.12.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...