Investigating Bioactive-Glass-Infused Gels for Enamel Remineralization: An In Vitro Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38786631
PubMed Central
PMC11122500
DOI
10.3390/jfb15050119
PII: jfb15050119
Knihovny.cz E-zdroje
- Klíčová slova
- bioactive glass, dental gel, enamel repair, ion release, remineralization,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Dental hypersensitivity remains widespread, underscoring the need for materials that can effectively seal dental tubules. This study evaluated the potential of bioactive-glass-infused hydroxyethyl cellulose gels in this context. METHODS: Five gels were synthesized, each containing 20% bioactive glass (specifically, 45S5, S53P4, Biomin F, and Biomin C), with an additional blank gel serving as a control. Subjected to two months of accelerated aging at 37 ± 2 °C, these gels were assessed for key properties: viscosity, water disintegration time, pH level, consistency, adhesion to glass, and element release capability. RESULTS: Across the board, the gels facilitated the release of calcium, phosphate, and silicon ions, raising the pH from 9.00 ± 0.10 to 9.7 ± 0.0-a range conducive to remineralization. Dissolution in water occurred within 30-50 min post-application. Viscosity readings showed variability, with 45S5 reaching 6337 ± 24 mPa/s and Biomin F at 3269 ± 18 mPa/s after two months. Initial adhesion for the blank gel was measured at 0.27 ± 0.04 Pa, increasing to 0.73 ± 0.06 Pa for the others over time. Gels can release elements upon contact with water (Ca- Biomin C 104.8 ± 15.7 mg/L; Na- Biomin F 76.30 ± 11.44 mg/L; P- Biomin C 2.623 ± 0.393 mg/L; Si- 45S5-45.15 ± 6.77mg/L, F- Biomin F- 3.256 ± 0.651mg/L; Cl- Biomin C 135.5 ± 20.3 mg/L after 45 min). CONCLUSIONS: These findings highlight the gels' capacity to kickstart the remineralization process by delivering critical ions needed for enamel layer reconstruction. Further exploration in more dynamic, real-world conditions is recommended to fully ascertain their practical utility.
Zobrazit více v PubMed
Pepla E., Besharat L.K., Palaia G., Tenore G., Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann. Stomatol. 2014;5:108–114. doi: 10.11138/ads/2014.5.3.108. PubMed DOI PMC
Pierote J.J.A., Barbosa I.F., Prieto L.T., Lima D.A.N.L., Paulillo L.A.M.S., Aguiar F.H.B. Effects of desensitizing dentifrices on the reduction of pain sensitivity caused by in-office dental whitening: A double-blind controlled clinical study. Clin. Cosmet. Investig. Dent. 2019;11:219–226. doi: 10.2147/CCIDE.S198940. PubMed DOI PMC
Sari M., Ramadhanti D.M., Amalina R., Chotimah Ana I.D., Yusuf Y. Development of a hydroxyapatite nanoparticle-based gel for enamel remineralization—A physicochemical properties and cell viability assay analysis. Dent. Mat. J. 2021;41:68–77. doi: 10.4012/dmj.2021-102. PubMed DOI
Jafari N., Habashi M.S., Hashemi A., Shirazi R., Tanideh N., Tamadon A. Application of bioactive glasses in various dental fields. Biomater. Res. 2022;26:31. doi: 10.1186/s40824-022-00274-6. PubMed DOI PMC
O’Neill E., Awale G., Daneshmandi L., Umerah O., Lo K.W.H. The roles of ions on bone regeneration. Drug Discov. Today. 2018;23:879–890. doi: 10.1016/j.drudis.2018.01.049. PubMed DOI
Davari A., Ataei E., Assarzadeh H. Dentin hypersensitivity: Etiology, diagnosis and treatment; a literature review. J. Dent. 2013;14:136–145. PubMed PMC
Dionysopoulos D., Gerasimidou O., Beltes C. Dentin Hypersensitivity: Etiology, Diagnosis and Contemporary Therapeutic Approaches—A Review in Literature. Appl. Sci. 2023;13:11632. doi: 10.3390/app132111632. DOI
Jang J.H., Oh S., Kim H.J., Kim D.S. A randomized clinical trial for comparing the efficacy of desensitizing toothpastes on the relief of dentin hypersensitivity. Sci. Rep. 2023;13:5271. doi: 10.1038/s41598-023-31616-6. PubMed DOI PMC
Madan N., Madan N., Sharma V., Pardal D., Madan N. Tooth remineralization using bio-active glass—A novel approach. Annals Med. Health Sci. Res. 2011;53:305–307. doi: 10.1177/2229411220110209. DOI
Kaou M.H., Furkó M., Balázsi K., Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. Nanomaterials. 2023;13:2287. doi: 10.3390/nano13162287. PubMed DOI PMC
Xu J., Shi H., Luo J., Yao H., Wang P., Li Z., Wei J. Advanced materials for enamel remineralization. Front. Bioeng. Biotechnol. 2022;10:985881. doi: 10.3389/fbioe.2022.985881. PubMed DOI PMC
Borges A.B., Yui K.C.K., D’Avila T.C., Takahashi C.L., Torres C.R., Grass A.L.S. Influence of Remineralizing Gels on Bleached Enamel Microhardness In Different Time Intervals. Oper. Dent. 2010;35:180–186. doi: 10.2341/09-117-L. PubMed DOI
Marquis R.E. Antimicrobial actions of fluoride for oral bacteria. Can. J. Microbiol. 1995;41:955–964. doi: 10.1139/m95-133. PubMed DOI
Clark M.B., Keels M.A., Slayton R.L., Section on Oral H., Fisher-Owens S.A., Huff Q.A. Fluoride use in caries prevention in the primary care setting. Pediatrics. 2020;146:e2020034637. doi: 10.1542/peds.2020-034637. PubMed DOI
Amaechi B.T., Mathews S.M., Mensinkai P.K. Effects of theobromine-containing toothpaste on dentin tubule occlusion in situ. Clin. Oral Investig. 2015;19:109–116. doi: 10.1007/s00784-014-1226-1. PubMed DOI
Negut I., Ristoscu C. Bioactive Glasses for Soft and Hard Tissue Healing Applications—A Short Review. Appl. Sci. 2023;13:6151. doi: 10.3390/app13106151. DOI
Rastelli A.N.S., Nicolodelli G., Romano R.A., Milori D.M.B.P., Perazzoli I.L.O., Ferreira E.J., Pedroso A.C.B., Souza M.T., Peitl O., Zanotto E.D. After bleaching enamel remineralization using a bioactive glass-ceramic (BioSilicate®) Biomed. Glas. 2016;2:1–9. doi: 10.1515/bglass-2016-0001. DOI
Makanjuola J., Deb S. Chemically Activated Glass-Ionomer Cements as Bioactive Materials in Dentistry: A Review. Prosthesis. 2023;5:24. doi: 10.3390/prosthesis5010024. DOI
Lyyra I., Leino K., Hukka T., Hannula M., Kellomäki M., Massera J. Impact of Glass Composition on Hydrolytic Degradation of Polylactide/Bioactive Glass Composites. Materials. 2021;14:667. doi: 10.3390/ma14030667. PubMed DOI PMC
Khonina T.G., Chupakhin O.N., Shur V.Y., Turygin A.P., Sadovsky V.V., Mandra Y.V. Silicon-hydroxyapatite glycerohydrogel as a promising biomaterial for dental applications. Colloids Surf. B. 2020;189:110851. doi: 10.1016/j.colsurfb.2020.110851. PubMed DOI
Jang J.-H., Lee M.-G., Ferracane J.-L., Davis H., Bae H.-E., Choi D., Kim D.-S. Effect of bioactive glass-containing resin composite on dentin remineralization. J. Dent. 2018;73:72–78. doi: 10.1016/j.jdent.2018.05.017. PubMed DOI
Raszewski Z., Chojnacka K., Mikulewicz M., Alhotan A. Bioactive Glass-Enhanced Resins: A New Denture Base Material. Materials. 2023;16:4363. doi: 10.3390/ma16124363. PubMed DOI PMC
Anurova M.N., Bakhrushina E.O., Demina N.B., Kashperko A.S., Shevchenko E.D., Leshcheva E.V., Krasnyuk I.I., Bardakov A.I. Development of Composition and Technologies of Dental Gel of Meloxicam. Open Access Maced. J. Med. Sci. 2020;30:88–93. doi: 10.3889/oamjms.2020.4541. DOI
Nair A.B., Shah J., Jacob S., Al-Dhubiab B.E., Patel V., Sriharsha N., Shinu P. Development of Mucoadhesive Buccal Film for Rizatriptan: In Vitro and In Vivo Evaluation. Pharmaceutics. 2021;13:728. doi: 10.3390/pharmaceutics13050728. PubMed DOI PMC
Kurniawansyah I.S., Rusdiana T., Sopyan I., Desy Arya I.F., Wahab H.A., Nurzanah D. Comparative Study of In Situ Gel Formulation Based on the Physico-Chemical Aspect: Systematic Review. Gels. 2023;9:645. doi: 10.3390/gels9080645. PubMed DOI PMC
Saab M., Mehanna M.M. Disintegration time of orally dissolving films: Various methodologies and in-vitro/in-vivo correlation. Pharmazie. 2019;7:227–230. PubMed
Speer I., Steiner D., Thabet Y., Breitkreutz J., Kwade A. Comparative study on disintegration methods for oral film preparations. Eur. J. Pharm. Biopharm. 2018;132:50–61. doi: 10.1016/j.ejpb.2018.09.005. PubMed DOI
Budi H.S., Anitasari S., Ulfa N.M., Juliastuti W.S., Aljunaid M., Ramadan D.E., Muzari K., Shen Y.K. Topical Medicine Potency of Musa paradisiaca var. sapientum (L.) kuntze as Oral Gel for Wound Healing: An In Vitro, In Vivo Study. Eur. J. Dent. 2022;16:848–855. PubMed PMC
Maslii Y., Ruban O., Kasparaviciene G., Kalveniene Z., Materiienko A., Ivanauskas L., Mazurkeviciute A., Kopustinskiene D.M., Bernatoniene J. The Influence of pH Values on the Rheological, Textural and Release Properties of Carbomer Polacril® 40P-Based Dental Gel Formulation with Plant-Derived and Synthetic Active Components. Molecules. 2020;25:5018. doi: 10.3390/molecules25215018. PubMed DOI PMC
Garala K., Joshi P., Shah M., Ramkishan A., Patel J. Formulation and evaluation of periodontal in situ gel. Int. J. Pharm. Investig. 2013;3:29–41. doi: 10.4103/2230-973X.108961. PubMed DOI PMC
Dantas M.G., Reis S.A., Damasceno C.M., Rolim L.A., Rolim-Neto P.J., Carvalho F.O., Quintans-Junior L.J., Almeida J.R. Development and Evaluation of Stability of a Gel Formulation Containing the Monoterpene Borneol. Sci. World J. 2016;2016:7394685. doi: 10.1155/2016/7394685. PubMed DOI PMC
Vollenweider M., Brunner T.J., Knecht S., Grass R.N., Zehnder M., Imfeld T., Stark W.J. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 2007;3:936–943. doi: 10.1016/j.actbio.2007.04.003. PubMed DOI
Greenspan D.C., Hench L.L. Bioactive glass for tooth remineralization and pain desensitization. Adv. Bioceram. Porous Ceram. VI Ceram. Eng. Sci. Proc. 2013;34:29–42.
Maçon A.L.B., Valliant E.M., Earl J.S., Jones J.R. Bioactivity of toothpaste containing bioactive glass in remineralizing media: Effect of fluoride release from the enzymatic cleavage of monofluorophosphate. Biomed. Glas. 2015;1:41–50. doi: 10.1515/bglass-2015-0005. DOI
Fernando D., Attik N., Pradelle-Plasse N., Jackson P., Grosgogeat B., Colon P. Bioactive glass for dentin remineralization: A systematic review. Mater. Sci. Eng. C. 2017;76:1369–1377. doi: 10.1016/j.msec.2017.03.083. PubMed DOI
Siekkinen M., Engblom M., Karlström O. Dissolution of Bioactive Glass S53P4 in Continuous Flows of Tris Buffer and Lactic Acid. Biomed. Mater. Devices. 2023:1–13. doi: 10.1007/s44174-023-00140-6. DOI
Akbarzade T., Farmany A., Farhadian M., Khamverdi Z., Dastgir R. Synthesis and characterization of nano bioactive glass for improving enamel remineralization ability of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) BMC Oral Health. 2022;22:525. doi: 10.1186/s12903-022-02549-9. PubMed DOI PMC
Zhang R., Qi J., Gong M., Liu Q., Zhou H., Wang J., Mei Y. Effects of 45S5 bioactive glass on the remineralization of early carious lesions in deciduous teeth: An in vitro study. BMC Oral Health. 2021;21:600. doi: 10.1186/s12903-021-01931-3. PubMed DOI PMC
Gupta S., Samanta M.K., Raichur A.M. Dual-drug delivery system based on in situ gel-forming nanosuspension of forskolin to enhance antiglaucoma efficacy. AAPS Pharm. Sci. Tech. 2010;11:322–335. doi: 10.1208/s12249-010-9388-x. PubMed DOI PMC
Muangsiri W., Werawatganone P., Sailo S., Thaipitakwong T. Formulation and evaluation of dental gels and pastilles containing xylitol for dental caries. J. Appl. Pharm. Sci. 2022;12:96–104. doi: 10.7324/JAPS.2022.120911. DOI
Dong Z., Chang J., Zhou Y.-M., Lin K. In vitro remineralization of human dental enamel by bioactive glasses. J. Mat. Sci. 2011;46:591–1596. doi: 10.1007/s10853-010-4968-4. DOI
Gong T., Hou Y., Yang X., Guo Y. Gelation of hydroxyethyl cellulose aqueous solution induced by addition of colloidal silica nanoparticles. Int. J. Biol. Macromol. 2019;134:547–556. doi: 10.1016/j.ijbiomac.2019.05.069. PubMed DOI
Waly G.H. Preparation and Characterization of Chitosan-Based Post-Bleaching Enamel Remineralizing Gel. Acta Sci. Dent. Sci. 2018;2:88–95.
Golovanenko A.L., Berezina E., Alekseeva I.V. Standardization of Gel for Enamel Remineralization. Pharm. Chem. J. 2016;49:843–846. doi: 10.1007/s11094-016-1384-3. DOI
Sakae L.O., Bezerra S.J.C., João-Souza S.H., Borges A.B., Aoki I.V., Aranha A.C.C., Scaramucci T. An in vitro study on the influence of viscosity and frequency of application of fluoride/tin solutions on the progression of erosion of bovine enamel. Arch. Oral Biol. 2018;89:26–30. doi: 10.1016/j.archoralbio.2018.01.017. PubMed DOI
Nurman S., Yulia R., Irmayanti, Noor E., Candra Sunarti T. The optimization of gel preparations using the active compounds of arabica coffee ground nanoparticles. Sci. Pharm. 2019;87:32. doi: 10.3390/scipharm87040032. DOI
Blažková A., Hrivíková J., Lapčík L. Viscosity properties of aqueous solutions of hydroxyethylcellulose. Chem. Pap. 1999;44:289–301.
Cannio M., Bellucci D., Roether J.A., Boccaccini D.N., Cannillo V. Bioactive Glass Applications: A Literature Review of Human Clinical Trials. Materials. 2021;14:5440. doi: 10.3390/ma14185440. PubMed DOI PMC
Hmood F., Goerke O., Schmidt F. Chemical Composition Refining of Bioactive Glass for Better Processing Features, Part I. Biomed. Glas. 2016;49:82–94. doi: 10.1515/bglass-2018-0008. DOI
Shruthi D.P., Patil G.S., Prithviraj D.R. Comparative Evaluation of Ion Release in Bonded and Nonbonded Stainless Steel Brackets with Use of Different Mouthwashes: An In vitro Study. Contemp. Clin. Dent. 2020;11:15–19. doi: 10.4103/ccd.ccd_46_19. PubMed DOI PMC
Brito A.C., Dantas L.R., De Brito A.L. Loss on drying, calcium concentration and pH of fluoride dentifrices. Contemp. Clin. Dent. 2015;6:S72–S76. PubMed PMC
Simila H., Boccaccini R. Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review. Dent. Mat. 2022;38:e17–e30. doi: 10.1016/j.dental.2022.02.011. PubMed DOI