Investigating Bioactive-Glass-Infused Gels for Enamel Remineralization: An In Vitro Study

. 2024 Apr 29 ; 15 (5) : . [epub] 20240429

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38786631

OBJECTIVE: Dental hypersensitivity remains widespread, underscoring the need for materials that can effectively seal dental tubules. This study evaluated the potential of bioactive-glass-infused hydroxyethyl cellulose gels in this context. METHODS: Five gels were synthesized, each containing 20% bioactive glass (specifically, 45S5, S53P4, Biomin F, and Biomin C), with an additional blank gel serving as a control. Subjected to two months of accelerated aging at 37 ± 2 °C, these gels were assessed for key properties: viscosity, water disintegration time, pH level, consistency, adhesion to glass, and element release capability. RESULTS: Across the board, the gels facilitated the release of calcium, phosphate, and silicon ions, raising the pH from 9.00 ± 0.10 to 9.7 ± 0.0-a range conducive to remineralization. Dissolution in water occurred within 30-50 min post-application. Viscosity readings showed variability, with 45S5 reaching 6337 ± 24 mPa/s and Biomin F at 3269 ± 18 mPa/s after two months. Initial adhesion for the blank gel was measured at 0.27 ± 0.04 Pa, increasing to 0.73 ± 0.06 Pa for the others over time. Gels can release elements upon contact with water (Ca- Biomin C 104.8 ± 15.7 mg/L; Na- Biomin F 76.30 ± 11.44 mg/L; P- Biomin C 2.623 ± 0.393 mg/L; Si- 45S5-45.15 ± 6.77mg/L, F- Biomin F- 3.256 ± 0.651mg/L; Cl- Biomin C 135.5 ± 20.3 mg/L after 45 min). CONCLUSIONS: These findings highlight the gels' capacity to kickstart the remineralization process by delivering critical ions needed for enamel layer reconstruction. Further exploration in more dynamic, real-world conditions is recommended to fully ascertain their practical utility.

Zobrazit více v PubMed

Pepla E., Besharat L.K., Palaia G., Tenore G., Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann. Stomatol. 2014;5:108–114. doi: 10.11138/ads/2014.5.3.108. PubMed DOI PMC

Pierote J.J.A., Barbosa I.F., Prieto L.T., Lima D.A.N.L., Paulillo L.A.M.S., Aguiar F.H.B. Effects of desensitizing dentifrices on the reduction of pain sensitivity caused by in-office dental whitening: A double-blind controlled clinical study. Clin. Cosmet. Investig. Dent. 2019;11:219–226. doi: 10.2147/CCIDE.S198940. PubMed DOI PMC

Sari M., Ramadhanti D.M., Amalina R., Chotimah Ana I.D., Yusuf Y. Development of a hydroxyapatite nanoparticle-based gel for enamel remineralization—A physicochemical properties and cell viability assay analysis. Dent. Mat. J. 2021;41:68–77. doi: 10.4012/dmj.2021-102. PubMed DOI

Jafari N., Habashi M.S., Hashemi A., Shirazi R., Tanideh N., Tamadon A. Application of bioactive glasses in various dental fields. Biomater. Res. 2022;26:31. doi: 10.1186/s40824-022-00274-6. PubMed DOI PMC

O’Neill E., Awale G., Daneshmandi L., Umerah O., Lo K.W.H. The roles of ions on bone regeneration. Drug Discov. Today. 2018;23:879–890. doi: 10.1016/j.drudis.2018.01.049. PubMed DOI

Davari A., Ataei E., Assarzadeh H. Dentin hypersensitivity: Etiology, diagnosis and treatment; a literature review. J. Dent. 2013;14:136–145. PubMed PMC

Dionysopoulos D., Gerasimidou O., Beltes C. Dentin Hypersensitivity: Etiology, Diagnosis and Contemporary Therapeutic Approaches—A Review in Literature. Appl. Sci. 2023;13:11632. doi: 10.3390/app132111632. DOI

Jang J.H., Oh S., Kim H.J., Kim D.S. A randomized clinical trial for comparing the efficacy of desensitizing toothpastes on the relief of dentin hypersensitivity. Sci. Rep. 2023;13:5271. doi: 10.1038/s41598-023-31616-6. PubMed DOI PMC

Madan N., Madan N., Sharma V., Pardal D., Madan N. Tooth remineralization using bio-active glass—A novel approach. Annals Med. Health Sci. Res. 2011;53:305–307. doi: 10.1177/2229411220110209. DOI

Kaou M.H., Furkó M., Balázsi K., Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. Nanomaterials. 2023;13:2287. doi: 10.3390/nano13162287. PubMed DOI PMC

Xu J., Shi H., Luo J., Yao H., Wang P., Li Z., Wei J. Advanced materials for enamel remineralization. Front. Bioeng. Biotechnol. 2022;10:985881. doi: 10.3389/fbioe.2022.985881. PubMed DOI PMC

Borges A.B., Yui K.C.K., D’Avila T.C., Takahashi C.L., Torres C.R., Grass A.L.S. Influence of Remineralizing Gels on Bleached Enamel Microhardness In Different Time Intervals. Oper. Dent. 2010;35:180–186. doi: 10.2341/09-117-L. PubMed DOI

Marquis R.E. Antimicrobial actions of fluoride for oral bacteria. Can. J. Microbiol. 1995;41:955–964. doi: 10.1139/m95-133. PubMed DOI

Clark M.B., Keels M.A., Slayton R.L., Section on Oral H., Fisher-Owens S.A., Huff Q.A. Fluoride use in caries prevention in the primary care setting. Pediatrics. 2020;146:e2020034637. doi: 10.1542/peds.2020-034637. PubMed DOI

Amaechi B.T., Mathews S.M., Mensinkai P.K. Effects of theobromine-containing toothpaste on dentin tubule occlusion in situ. Clin. Oral Investig. 2015;19:109–116. doi: 10.1007/s00784-014-1226-1. PubMed DOI

Negut I., Ristoscu C. Bioactive Glasses for Soft and Hard Tissue Healing Applications—A Short Review. Appl. Sci. 2023;13:6151. doi: 10.3390/app13106151. DOI

Rastelli A.N.S., Nicolodelli G., Romano R.A., Milori D.M.B.P., Perazzoli I.L.O., Ferreira E.J., Pedroso A.C.B., Souza M.T., Peitl O., Zanotto E.D. After bleaching enamel remineralization using a bioactive glass-ceramic (BioSilicate®) Biomed. Glas. 2016;2:1–9. doi: 10.1515/bglass-2016-0001. DOI

Makanjuola J., Deb S. Chemically Activated Glass-Ionomer Cements as Bioactive Materials in Dentistry: A Review. Prosthesis. 2023;5:24. doi: 10.3390/prosthesis5010024. DOI

Lyyra I., Leino K., Hukka T., Hannula M., Kellomäki M., Massera J. Impact of Glass Composition on Hydrolytic Degradation of Polylactide/Bioactive Glass Composites. Materials. 2021;14:667. doi: 10.3390/ma14030667. PubMed DOI PMC

Khonina T.G., Chupakhin O.N., Shur V.Y., Turygin A.P., Sadovsky V.V., Mandra Y.V. Silicon-hydroxyapatite glycerohydrogel as a promising biomaterial for dental applications. Colloids Surf. B. 2020;189:110851. doi: 10.1016/j.colsurfb.2020.110851. PubMed DOI

Jang J.-H., Lee M.-G., Ferracane J.-L., Davis H., Bae H.-E., Choi D., Kim D.-S. Effect of bioactive glass-containing resin composite on dentin remineralization. J. Dent. 2018;73:72–78. doi: 10.1016/j.jdent.2018.05.017. PubMed DOI

Raszewski Z., Chojnacka K., Mikulewicz M., Alhotan A. Bioactive Glass-Enhanced Resins: A New Denture Base Material. Materials. 2023;16:4363. doi: 10.3390/ma16124363. PubMed DOI PMC

Anurova M.N., Bakhrushina E.O., Demina N.B., Kashperko A.S., Shevchenko E.D., Leshcheva E.V., Krasnyuk I.I., Bardakov A.I. Development of Composition and Technologies of Dental Gel of Meloxicam. Open Access Maced. J. Med. Sci. 2020;30:88–93. doi: 10.3889/oamjms.2020.4541. DOI

Nair A.B., Shah J., Jacob S., Al-Dhubiab B.E., Patel V., Sriharsha N., Shinu P. Development of Mucoadhesive Buccal Film for Rizatriptan: In Vitro and In Vivo Evaluation. Pharmaceutics. 2021;13:728. doi: 10.3390/pharmaceutics13050728. PubMed DOI PMC

Kurniawansyah I.S., Rusdiana T., Sopyan I., Desy Arya I.F., Wahab H.A., Nurzanah D. Comparative Study of In Situ Gel Formulation Based on the Physico-Chemical Aspect: Systematic Review. Gels. 2023;9:645. doi: 10.3390/gels9080645. PubMed DOI PMC

Saab M., Mehanna M.M. Disintegration time of orally dissolving films: Various methodologies and in-vitro/in-vivo correlation. Pharmazie. 2019;7:227–230. PubMed

Speer I., Steiner D., Thabet Y., Breitkreutz J., Kwade A. Comparative study on disintegration methods for oral film preparations. Eur. J. Pharm. Biopharm. 2018;132:50–61. doi: 10.1016/j.ejpb.2018.09.005. PubMed DOI

Budi H.S., Anitasari S., Ulfa N.M., Juliastuti W.S., Aljunaid M., Ramadan D.E., Muzari K., Shen Y.K. Topical Medicine Potency of Musa paradisiaca var. sapientum (L.) kuntze as Oral Gel for Wound Healing: An In Vitro, In Vivo Study. Eur. J. Dent. 2022;16:848–855. PubMed PMC

Maslii Y., Ruban O., Kasparaviciene G., Kalveniene Z., Materiienko A., Ivanauskas L., Mazurkeviciute A., Kopustinskiene D.M., Bernatoniene J. The Influence of pH Values on the Rheological, Textural and Release Properties of Carbomer Polacril® 40P-Based Dental Gel Formulation with Plant-Derived and Synthetic Active Components. Molecules. 2020;25:5018. doi: 10.3390/molecules25215018. PubMed DOI PMC

Garala K., Joshi P., Shah M., Ramkishan A., Patel J. Formulation and evaluation of periodontal in situ gel. Int. J. Pharm. Investig. 2013;3:29–41. doi: 10.4103/2230-973X.108961. PubMed DOI PMC

Dantas M.G., Reis S.A., Damasceno C.M., Rolim L.A., Rolim-Neto P.J., Carvalho F.O., Quintans-Junior L.J., Almeida J.R. Development and Evaluation of Stability of a Gel Formulation Containing the Monoterpene Borneol. Sci. World J. 2016;2016:7394685. doi: 10.1155/2016/7394685. PubMed DOI PMC

Vollenweider M., Brunner T.J., Knecht S., Grass R.N., Zehnder M., Imfeld T., Stark W.J. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 2007;3:936–943. doi: 10.1016/j.actbio.2007.04.003. PubMed DOI

Greenspan D.C., Hench L.L. Bioactive glass for tooth remineralization and pain desensitization. Adv. Bioceram. Porous Ceram. VI Ceram. Eng. Sci. Proc. 2013;34:29–42.

Maçon A.L.B., Valliant E.M., Earl J.S., Jones J.R. Bioactivity of toothpaste containing bioactive glass in remineralizing media: Effect of fluoride release from the enzymatic cleavage of monofluorophosphate. Biomed. Glas. 2015;1:41–50. doi: 10.1515/bglass-2015-0005. DOI

Fernando D., Attik N., Pradelle-Plasse N., Jackson P., Grosgogeat B., Colon P. Bioactive glass for dentin remineralization: A systematic review. Mater. Sci. Eng. C. 2017;76:1369–1377. doi: 10.1016/j.msec.2017.03.083. PubMed DOI

Siekkinen M., Engblom M., Karlström O. Dissolution of Bioactive Glass S53P4 in Continuous Flows of Tris Buffer and Lactic Acid. Biomed. Mater. Devices. 2023:1–13. doi: 10.1007/s44174-023-00140-6. DOI

Akbarzade T., Farmany A., Farhadian M., Khamverdi Z., Dastgir R. Synthesis and characterization of nano bioactive glass for improving enamel remineralization ability of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) BMC Oral Health. 2022;22:525. doi: 10.1186/s12903-022-02549-9. PubMed DOI PMC

Zhang R., Qi J., Gong M., Liu Q., Zhou H., Wang J., Mei Y. Effects of 45S5 bioactive glass on the remineralization of early carious lesions in deciduous teeth: An in vitro study. BMC Oral Health. 2021;21:600. doi: 10.1186/s12903-021-01931-3. PubMed DOI PMC

Gupta S., Samanta M.K., Raichur A.M. Dual-drug delivery system based on in situ gel-forming nanosuspension of forskolin to enhance antiglaucoma efficacy. AAPS Pharm. Sci. Tech. 2010;11:322–335. doi: 10.1208/s12249-010-9388-x. PubMed DOI PMC

Muangsiri W., Werawatganone P., Sailo S., Thaipitakwong T. Formulation and evaluation of dental gels and pastilles containing xylitol for dental caries. J. Appl. Pharm. Sci. 2022;12:96–104. doi: 10.7324/JAPS.2022.120911. DOI

Dong Z., Chang J., Zhou Y.-M., Lin K. In vitro remineralization of human dental enamel by bioactive glasses. J. Mat. Sci. 2011;46:591–1596. doi: 10.1007/s10853-010-4968-4. DOI

Gong T., Hou Y., Yang X., Guo Y. Gelation of hydroxyethyl cellulose aqueous solution induced by addition of colloidal silica nanoparticles. Int. J. Biol. Macromol. 2019;134:547–556. doi: 10.1016/j.ijbiomac.2019.05.069. PubMed DOI

Waly G.H. Preparation and Characterization of Chitosan-Based Post-Bleaching Enamel Remineralizing Gel. Acta Sci. Dent. Sci. 2018;2:88–95.

Golovanenko A.L., Berezina E., Alekseeva I.V. Standardization of Gel for Enamel Remineralization. Pharm. Chem. J. 2016;49:843–846. doi: 10.1007/s11094-016-1384-3. DOI

Sakae L.O., Bezerra S.J.C., João-Souza S.H., Borges A.B., Aoki I.V., Aranha A.C.C., Scaramucci T. An in vitro study on the influence of viscosity and frequency of application of fluoride/tin solutions on the progression of erosion of bovine enamel. Arch. Oral Biol. 2018;89:26–30. doi: 10.1016/j.archoralbio.2018.01.017. PubMed DOI

Nurman S., Yulia R., Irmayanti, Noor E., Candra Sunarti T. The optimization of gel preparations using the active compounds of arabica coffee ground nanoparticles. Sci. Pharm. 2019;87:32. doi: 10.3390/scipharm87040032. DOI

Blažková A., Hrivíková J., Lapčík L. Viscosity properties of aqueous solutions of hydroxyethylcellulose. Chem. Pap. 1999;44:289–301.

Cannio M., Bellucci D., Roether J.A., Boccaccini D.N., Cannillo V. Bioactive Glass Applications: A Literature Review of Human Clinical Trials. Materials. 2021;14:5440. doi: 10.3390/ma14185440. PubMed DOI PMC

Hmood F., Goerke O., Schmidt F. Chemical Composition Refining of Bioactive Glass for Better Processing Features, Part I. Biomed. Glas. 2016;49:82–94. doi: 10.1515/bglass-2018-0008. DOI

Shruthi D.P., Patil G.S., Prithviraj D.R. Comparative Evaluation of Ion Release in Bonded and Nonbonded Stainless Steel Brackets with Use of Different Mouthwashes: An In vitro Study. Contemp. Clin. Dent. 2020;11:15–19. doi: 10.4103/ccd.ccd_46_19. PubMed DOI PMC

Brito A.C., Dantas L.R., De Brito A.L. Loss on drying, calcium concentration and pH of fluoride dentifrices. Contemp. Clin. Dent. 2015;6:S72–S76. PubMed PMC

Simila H., Boccaccini R. Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review. Dent. Mat. 2022;38:e17–e30. doi: 10.1016/j.dental.2022.02.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...