Impact of Plant Extract Phytochemicals on the Synthesis of Silver Nanoparticles

. 2024 May 10 ; 17 (10) : . [epub] 20240510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38793321

This work aims to analyze the influence of selected plants on the synthesis of silver nanoparticles (AgNPs). Six plants were chosen for the experiment, from which extracts were prepared: maclura fruit, spruce and ginkgo needles, green algae (Ch. kessleri), and mushrooms, namely Collybia nuda, and Macrolepiota procera. The composition of the extracts and colloids after preparation of the nanoparticles was analyzed using FTIR analysis. The composition of the extracts affected not only the rate of the synthesis but also the shape of the nanoparticles. TEM analysis confirmed the synthesis of mainly spherical nanoparticles (size range: 10-25 nm). However, triangular prisms and polyhedral nanoparticles synthesized by the extracts containing mainly flavonoids, terpenes, and phenols (the main compounds of resins) were also confirmed. EDS analysis was used to analyze the composition of the nanoparticles. It was proven that by choosing the right plant extract and using the appropriate technology with extract treatment, it is possible to prepare nanoparticles of different shapes.

Zobrazit více v PubMed

Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules. 2020;25:112. doi: 10.3390/molecules25010112. PubMed DOI PMC

Abid N., Khan A.M., Shujait S., Chaudhary K., Ikram M., Imran M., Haider J., Khan M., Khan Q., Maqbool M. Synthesis of Nanomaterials Using Various Top-down and Bottom-up Approaches, Influencing Factors, Advantages, and Disadvantages: A Review. Adv. Colloid Interface Sci. 2022;300:102597. doi: 10.1016/j.cis.2021.102597. PubMed DOI

Huston M., Debella M., Dibella M., Gupta A. Green Synthesis of Nanomaterials. Nanomaterials. 2021;11:2130. doi: 10.3390/nano11082130. PubMed DOI PMC

Parveen K., Banse V., Ledwani L. Green Synthesis of Nanoparticles: Their Advantages and Disadvantages; Proceedings of the AIP Conference Proceedings; Rajasthan, India. 24–25 October 2015; Melville, NY, USA: American Institute of Physics Inc.; 2016. DOI

Roy A., Bulut O., Some S., Mandal A.K., Yilmaz M.D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019;9:2673–2702. doi: 10.1039/C8RA08982E. PubMed DOI PMC

Chugh D., Viswamalya V.S., Das B. Green Synthesis of Silver Nanoparticles with Algae and the Importance of Capping Agents in the Process. J. Genet. Eng. Biotechnol. 2021;19:126. doi: 10.1186/s43141-021-00228-w. PubMed DOI PMC

Eid M.M. Handbook of Consumer Nanoproducts. Springer; Singapore: 2021. Characterization of Nanoparticles by FTIR and FTIR-Microscopy; pp. 1–30. DOI

Mohanta Y.K., Singdevsachan S.K., Parida U.K., Panda S.K., Mohanta T.K., Bae H. Green Synthesis and Antimicrobial Activity of Silver Nanoparticles Using Wild Medicinal Mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India. IET Nanobiotechnol. 2016;10:184–189. doi: 10.1049/iet-nbt.2015.0059. PubMed DOI PMC

Singh H., Desimone M.F., Pandya S., Jasani S., George N., Adnan M., Aldarhami A., Bazaid A.S., Alderhami S.A. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int. J. Nanomed. 2023;18:4727–4750. doi: 10.2147/IJN.S419369. PubMed DOI PMC

Elshazly E.H., Nasr A., Elnosary M.E., Gouda G.A., Mohamed H., Song Y. Identifying the Anti-MERS-CoV and Anti-HcoV-229E Potential Drugs from the Ginkgo biloba Leaves Extract and Its Eco-Friendly Synthesis of Silver Nanoparticles. Molecules. 2023;28:1375. doi: 10.3390/molecules28031375. PubMed DOI PMC

Van Beek T.A., Montoro P. Chemical Analysis and Quality Control of Ginkgo Biloba Leaves, Extracts, and Phytopharmaceuticals. J. Chromatogr. A. 2009;1216:2002–2032. doi: 10.1016/j.chroma.2009.01.013. PubMed DOI

Van Beek T.A. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A. 2002;1:21–55. doi: 10.1016/s0021-9673(02)00172-3. PubMed DOI

Liu X.G., Wu S.Q., Li P., Yang H. Advancement in the Chemical Analysis and Quality Control of Flavonoid in Ginkgo biloba. J. Pharm. Biomed. Anal. 2015;113:212–225. doi: 10.1016/j.jpba.2015.03.006. PubMed DOI

Moreno Osorio J.H., Luongo V., Del Mondo A., Pinto G., Pollio A., Frunzo L., Lens P.N.L., Esposito G. Nutrient Removal from High Strength Nitrate Containing Industrial Wastewater Using Chlorella Sp. Ann. Microbiol. 2018;68:899–913. doi: 10.1007/s13213-018-1400-9. DOI

Ramos-Romero S., Torrella J.R., Pagès T., Viscor G., Torres J.L. Edible Microalgae and Their Bioactive Compounds in the Prevention and Treatment of Metabolic Alterations. Nutrients. 2021;13:563. doi: 10.3390/nu13020563. PubMed DOI PMC

Lorenzo K., Santocildes G., Torrella J.R., Magalhães J., Pagès T., Viscor G., Torres J.L., Ramos-Romero S. Bioactivity of Macronutrients from Chlorella in Physical Exercise. Nutrients. 2023;15:2168. doi: 10.3390/nu15092168. PubMed DOI PMC

Handayani W., Ningrum A.S., Imawan C. The Role of PH in Synthesis Silver Nanoparticles Using Pometia Pinnata (Matoa) Leaves Extract as Bioreductor. J. Phys. Conf. Ser. 2020;1428:012021. doi: 10.1088/1742-6596/1428/1/012021. DOI

Miranda A., Akpobolokemi T., Chung E., Ren G., Raimi-Abraham B.T. PH Alteration in Plant-Mediated Green Synthesis and Its Resultant Impact on Antimicrobial Properties of Silver Nanoparticles (AgNPs) Antibiotics. 2022;11:1592. doi: 10.3390/antibiotics11111592. PubMed DOI PMC

Chutrakulwong F., Thamaphat K., Limsuwan P. Photo-Irradiation Induced Green Synthesis of Highly Stable Silver Nanoparticles Using Durian Rind Biomass: Effects of Light Intensity, Exposure Time and Ph on Silver Nanoparticles Formation. J. Phys. Commun. 2020;4:095015. doi: 10.1088/2399-6528/abb4b5. DOI

Traiwatcharanon P., Timsorn K., Wongchoosuk C. Effect of Ph on the Green Synthesis of Silver Nanoparticles through Reduction with Pistiastratiotes L. Extract. Adv. Mat. Res. 2015;1131:223–226. doi: 10.4028/www.scientific.net/amr.1131.223. DOI

Dada A.O., Adekola F.A., Adeyemi O.S., Bello O.M., Oluwaseun A.C., Awakan O.J., Grace F.-A.A. Exploring the Effect of Operational Factors and Characterization Imperative to the Synthesis of Silver Nanoparticles. Silver Nanopart.—Fabr. Charact. Appl. 2018:165–184. doi: 10.5772/intechopen.76947. DOI

Alharbi N.S., Alsubhi N.S., Felimban A.I. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J. Rad. Res. Appl. Sci. 2022;15:109–124. doi: 10.1016/j.jrras.2022.06.012. DOI

Prathna T.C., Chandrasekaran N., Raichur A.M., Mukherjee A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B Biointerfaces. 2011;82:152–159. doi: 10.1016/j.colsurfb.2010.08.036. PubMed DOI

Naghmachi M., Raissi A., Baziyar P., Homayoonfar F., Amirmahani F., Danaei M. Green synthesis of silver nanoparticles (AgNPs) by Pistacia terebinthus extract: Comprehensive evaluation of antimicrobial, antioxidant and anticancer effects. Biochem. Biophys. Res. Comm. 2022;608:163e169. doi: 10.1016/j.bbrc.2022.04.003. PubMed DOI

Sharifi-Rad M., Elshafie H.S., Pohl P. Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf extract: Their Bio-Pharmaceutical and catalytic properties. J. Photochem. Photobiol. A Chem. 2024;448:115318. doi: 10.1016/j.jphotochem.2023.115318. DOI

Rao C.N.R. Chemical Applications of Infrared Spectroscopy. Academic Press; New York, NY, USA: London, UK: 1963. 681p

Bellamy L.J. Infrared Spectra of Complex Molecules. Halsted Press; Ultimo, Australia: Chapman Hall; London, UK: 1975.

Ahmed K.K.M., Rana A.C., Dixit V.K. Calotropis species (Asclepediaceae). A comprehensive review. Pharmacog. Mag. 2005;1:48–52.

Li Y.M., Sun S.Q., Zhou Q., Qin Z., Tao J.X., Wang J., Fang X. Identification of American Ginseng from Different Regions Using FT-IR and Two-Dimensional Correlation IR Spectroscopy. Vib. Spectrosc. 2004;36:227–232. doi: 10.1016/j.vibspec.2003.12.009. DOI

Azizian-Shermeh O., Einali A., Ghasemi A. Rapid Biologically One-Step Synthesis of Stable Bioactive Silver Nanoparticles Using Osage Orange (Maclura pomifera) Leaf Extract and Their Antimicrobial Activities. Adv. Powder Technol. 2017;28:3164–3171. doi: 10.1016/j.apt.2017.10.001. DOI

Tanase C., Berta L., Coman N.A., Roşca I., Man A., Toma F., Mocan A., Nicolescu A., Jakab-Farkas L., Biró D., et al. Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract. Nanomaterials. 2019;9:1541. doi: 10.3390/nano9111541. PubMed DOI PMC

Alegria E.C.B.A., Ribeiro A.P.C., Mendes M., Ferraria A.M., Botelho do Rego A.M., Pombeiro A.J.L. Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and Its Catalytic Activity in the Reduction of Nitro Compounds. Nanomaterials. 2018;8:320. doi: 10.3390/nano8050320. PubMed DOI PMC

Brandenburg K., Seydel U. Fourier Transform Infrared Spectroscopy of cell surface polysaccharides. In: Manstsch H.H., Chapman D., editors. Infrared Spectroscopy of Biomolecules. Wiley; Chichester, UK: 1996. pp. 203–278.

Dharani V. Fourier Transform Infrared (FTIR) Spectroscopy for the Analysis of Lipid from Chlorella vulgaris. Elixir Appl. Biol. 2013;61:16753–16756.

Dean A.P., Martin M.C., Sigee D.C. Resolution of Codominant Phytoplankton Species in a Eutrophic Lake Using Synchrotron-Based Fourier Transform Infrared Spectroscopy. Phycologia. 2007;46:151–159. doi: 10.2216/06-27.1. DOI

Zheng S., Zhou Q., Chen C., Yang F., Cai Z., Li D., Geng Q., Feng Y., Wang H. Role of Extracellular Polymeric Substances on the Behavior and Toxicity of Silver Nanoparticles and Ions to Green Algae Chlorella vulgaris. Sci. Total Environ. 2019;660:1182–1190. doi: 10.1016/j.scitotenv.2019.01.067. PubMed DOI

Tang J., Hu Z.-Y., Chen X.-W. Free Radical Scavenging and Antioxidant Enzymes Activation of Polysaccharide Extract from Nostoc sphaeroides. Am. J. Chin. Med. 2007;35:887–896. doi: 10.1142/S0192415X07005351. PubMed DOI

Shu X., Zhang Y., Jia J., Ren X., Wang Y. Extraction, Purification and Properties of Water-Soluble Polysaccharides from Mushroom Lepista nuda. Int. J. Biol. Macromol. 2019;128:858–869. doi: 10.1016/j.ijbiomac.2019.01.214. PubMed DOI

Pinto S., Barros L., Sousa M.J., Ferreira I.C.F.R. Chemical Characterization and Antioxidant Properties of Lepista Nuda Fruiting Bodies and Mycelia Obtained by in Vitro Culture: Effects of Collection Habitat and Culture Media. Food Res. Int. 2013;51:496–502. doi: 10.1016/j.foodres.2013.01.009. DOI

Rajeshkumar S., Bharath L.V. Mechanism of Plant-Mediated Synthesis of Silver Nanoparticles—A Review on Biomolecules Involved, Characterisation and Antibacterial Activity. Chem. Biol. Interact. 2017;273:219–227. doi: 10.1016/j.cbi.2017.06.019. PubMed DOI

Kumar S., Basumatary I.B., Sudhani H.P.K., Bajpai V.K., Chen L., Shukla S., Mukherjee A. Plant Extract Mediated Silver Nanoparticles and Their Applications as Antimicrobials and in Sustainable Food Packaging: A State-of-the-Art Review. Trends Food Sci. Technol. 2021;112:651–666. doi: 10.1016/j.tifs.2021.04.031. DOI

Jena S., Singh R.K., Panigrahi B., Suar M., Mandal D. Photo-bioreduction of Ag+ ions towards the generation of multifunctional silver nanoparticles: Mechanistic perspective and therapeutic potential. J. Photochem. Photobiol. B Biol. 2016;164:306–313. doi: 10.1016/j.jphotobiol.2016.08.048. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...