Biodegradation of phthalic acid and terephthalic acid by Comamonas testosteroni strains
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38809402
DOI
10.1007/s12223-024-01176-x
PII: 10.1007/s12223-024-01176-x
Knihovny.cz E-zdroje
- Klíčová slova
- Comamonas testosteroni, Biodegradation, Gene detection, Phthalic acid isomers, Real-time PCR,
- MeSH
- biodegradace MeSH
- Comamonas testosteroni * genetika metabolismus MeSH
- fermentace MeSH
- kyseliny ftalové * metabolismus MeSH
- plazmidy genetika MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny ftalové * MeSH
- phthalic acid MeSH Prohlížeč
- terephthalic acid MeSH Prohlížeč
Phthalic acid isomers are the monomers of phthalate molecules, also known as phthalic acid esters, widely employed in the plastics industry. This study aims to investigate the biodegradation of phthalic acid (PA) and terephthalic acid (TPA) by five industry-borne Comamonas testosteroni strains: 3APTOL, 3ABBK, 2B, 3A1, and C8. To assess the ability of C. testosteroni strains to biodegrade phthalic acid isomers in fermentation media, an analytical method was employed, consisting of high-performance liquid chromatography (HPLC) analyses. Subsequently, molecular screening of the genomic and plasmid DNA was conducted to identify the degradative genes responsible for the breakdown of these chemicals. The genes of interest, including ophA2, tphA2, tphA3, pmdA, and pmdB, were screened by real-time PCR. The five C. testosteroni strains effectively degraded 100% of 100 mg/L PA (p = 0.033) and TPA (p = 0.0114). Molecular analyses indicated that all C. testosteroni strains contained the pertinent genes at different levels within their genomes and plasmids, as reflected in the threshold cycle (Ct) values. Additionally, DNA temperature of melting (Tm) analyses uncovered minor differences between groups of genes in genomic and plasmid DNA. C. testosteroni strains could be excellent candidates for the removal of phthalic acid isomers from environmental systems.
Zobrazit více v PubMed
Abdoul Magid ASI, Islam MS, Chen Y, Weng L, Sun Y, Chang X, Zhou B, Ma J, Li Y (2021) Competitive adsorption of dibutyl phthalate (DBP) and Di (2-ethylhexyl) phthalate (DEHP) onto fresh and oxidized corncob biochar. Chemosphere 280:130639. https://doi.org/10.1016/j.chemosphere.2021.130639 PubMed DOI
Aksu D, Diallo MM, Şahar U, Uyaniker TA, Ozdemir G (2021a) High expression of ring-hydroxylating dioxygenase genes ensure efficient degradation of p-toluate, phthalate, and terephthalate by Comamonas testosteroni strain 3a2. Arch Microbiol 203:4101–4112. https://doi.org/10.1007/s00203-021-02395-3 PubMed DOI
Aksu D, Vural C, Karabey B, Ozdemir G (2021b) Biodegradation of terephthalic acid by ısolated active sludge microorganisms and monitoring of bacteria in a continuous stirred tank reactor. Brazilian Arch Biol Technol 64:1–10. https://doi.org/10.1590/1678-4324-2021200002 DOI
Benjamin S, Pradeep S, Sarath Josh M, Kumar S (2015) A monograph on the remediation of hazardous phthalates. J Hazard Mater 298:58–72. https://doi.org/10.1016/j.jhazmat.2015.05.004 PubMed DOI
Bhattacharya P, Mukherjee D, Deb N, Swarnakar S, Banerjee S (2021) Indigenously developed CuO/TiO2 coated ceramic ultrafiltration membrane for removal of emerging contaminants like phthalates and parabens: toxicity evaluation in PA-1 cell line. Mater Chem Phys 258:123920. https://doi.org/10.1016/j.matchemphys.2020.123920 DOI
Boll M, Geiger R, Junghare M, Schink B (2020) Microbial degradation of phthalates: biochemistry and environmental implications. Environ Microbiol Rep 12:3–15. https://doi.org/10.1111/1758-2229.12787 PubMed DOI
Carstens L, Cowan AR, Seiwert B, Schlosser D (2020) biotransformation of phthalate plasticizers and bisphenol A by marine-derived, freshwater, and terrestrial fungi. Front Microbiol 11:1–21. https://doi.org/10.3389/fmicb.2020.00317 DOI
Cheshmazar E, Arfaeinia L, Vasseghian Y, Ramavandi B, Mordai M, Hashemi SE, Asgari E, Arfaeinia H, Dragoi EN, Khaneghah AM (2021) Phthalate acid esters in pickled vegetables packaged in polyethylene terephthalate container: occurrence, migration, and estrogenic activity-associated risk assessment. J Food Compos Anal 99:103880. https://doi.org/10.1016/j.jfca.2021.103880 DOI
Chow J, Perez-Garcia P, Dierkes R, Streit WR (2023) Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microb Biotechnol 16:195–217. https://doi.org/10.1111/1751-7915.14135 PubMed DOI
Dolatabadi M, Świergosz T, Ahmadzadeh S (2021) Electro-Fenton approach in oxidative degradation of dimethyl phthalate - the treatment of aqueous leachate from landfills. Sci Total Environ 772. https://doi.org/10.1016/j.scitotenv.2021.145323 PubMed DOI
Dutton JR, Venables WA, Sain CP (1995) Cornarnonas acidovorans UCCGI catabolizes o-phthalate via a 4,5=oxygenation pathway that is encoded on a 70 kbp section of plasmid pOPHl bounded by directly repeated sequences. Microbiology 141:1673–1682 DOI
Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703. https://doi.org/10.1128/JB.183.12.3689-3703.2001 PubMed DOI PMC
Eaton RW, Ribbons DW (1982) Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol 151:48–57. https://doi.org/10.1128/jb.151.1.48-57.1982 PubMed DOI PMC
Estévez-Danta A, Rodil R, Pérez-Castaño B, Cela R, Quintana JB, González-Mariño I (2021) Comprehensive determination of phthalate, terephthalate and di-iso-nonyl cyclohexane-1,2-dicarboxylate metabolites in wastewater by solid-phase extraction and ultra(high)-performance liquid chromatography-tandem mass spectrometry. Talanta 224:121912. https://doi.org/10.1016/j.talanta.2020.121912 PubMed DOI
Filardi T, Panimolle F, Lenzi A, Morano S (2020) Bisphenol a and phthalates in diet: an emerging link with pregnancy complications. Nutrients 12:1–15. https://doi.org/10.3390/nu12020525 DOI
Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds- from one strategy to four. Nat Rev Microbiol 9:803–816. https://doi.org/10.1038/nrmicro2652 PubMed DOI
Fukuhara Y, Inakazu K, Kodama N, Kamimura N, Kasai D, Katayama Y, Fukuda M, Masai E (2010) Characterization of the isophthalate degradation genes of Comamonas sp. strain E6. Appl Environ Microbiol 76:519–527. https://doi.org/10.1128/AEM.01270-09 PubMed DOI
Gao H, Wang Y, Wang Z, Wang Y, Tao F (2022) Prenatal phthalate exposure associated with age-specific alterations in markers of adiposity in offspring: a systematic review. Ecotoxicol Environ Saf 232:113247. https://doi.org/10.1016/j.ecoenv.2022.113247 PubMed DOI
Golestanzadeh M, Riahi R, Kelishadi R (2019) Association of exposure to phthalates with cardiometabolic risk factors in children and adolescents: a systematic review and meta-analysis. Environ Sci Pollut Res 26:35670–35686. https://doi.org/10.1007/s11356-019-06589-7 DOI
González-Escobar JL, Pereyra-Camacho MA, De Léon-Rodríguez A, Grajales-Lagunes A, Reyes-Agüero A, Chagolla-López A, de-la-Rosa APB (2020) Biodegradation of recalcitrant compounds and phthalates by culturable bacteria isolated from Liometopum apiculatum microbiota. World J Microbiol Biotechnol 36:1–13. https://doi.org/10.1007/s11274-020-02850-1 DOI
Henderson AL, Colaiácovo MP (2021) Exposure to phthalates: germline dysfunction and aneuploidy. Prenat Diagn 41:610–619. https://doi.org/10.1002/pd.5921 PubMed DOI
Hong-bo Z, Feng L, Pei-lei H, De-cai J, Hong-qiang R, Jing Z, Guan-zhou Q (2009) Aerobic biodegradation of di-n-butyl phthalate by Xiangjiang River sediment and microflora analysis ZHOU. J Cent South Univ Technol 16:948–953. https://doi.org/10.1007/s11771 DOI
Hu R, Zhao H, Xu X, Wang Z, Yu K, Shu L, Yan Q, Wu B, Mo C, He Z, Wang C (2021) Bacteria-driven phthalic acid ester biodegradation: current status and emerging opportunities. Environ Int 154:106560. https://doi.org/10.1016/j.envint.2021.106560 PubMed DOI
Hyppólito MP, Perini JAL, da Silva BF, Jorge SMA, Zanoni MVB (2022) Modification of Ti/TiO2NT with ZrO2 nanoparticles to enhance photoelectrocatalytic performance in removal of dibutyl phthalate. Environ Sci Pollut Res 42:64112–64123. https://doi.org/10.1007/s11356-022-20296-w DOI
Kamimura N, Aoyama T, Yoshida R, Takahashi K, Kasai D, Abe T, Mase K, Katayama Y, Fukuda M, Masai E (2010) Characterization of the protocatechuate 4,5-cleavage pathway operon in Comamonas sp. strain E6 and discovery of a novel pathway gene. Appl Environ Microbiol 76:8093–8101. https://doi.org/10.1128/AEM.01863-10 PubMed DOI PMC
Kaur R, Kumari A, Rajput VD, Minkina T, Kaur R (2023) Biodegradation of phthalates and metabolic pathways: an overview. Environ Sustain 6:303–318. https://doi.org/10.1007/s42398-023-00268-7 DOI
Kotowska U, Kapelewska J, Sawczuk R (2020) Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. Environ Pollut 267:115643. https://doi.org/10.1016/j.envpol.2020.115643 PubMed DOI
Kumar V, Sharma N, Maitra SS (2017) Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F. Biotechnol Reports 15:1–10. https://doi.org/10.1016/j.btre.2017.04.002 DOI
Li J, Luo F, Chu D, Xuan H, Dai X (2017) Complete degradation of dimethyl phthalate by a Comamonas testosterone strain. J Basic Microbiol 57:941–949. https://doi.org/10.1002/jobm.201700296 PubMed DOI
Lu Q, Sun X, Jiang Z, Cui Y, Li X, Cui J (2022) Effects of Comamonas testosteroni on dissipation of polycyclic aromatic hydrocarbons and the response of endogenous bacteria for soil bioremediation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21497-z DOI
Mahto JK, Neetu N, Waghmode B, Kuatsjah E, Sharma M, Sircar D, Sharma AK, Tomar S, Eltis LD, Kumar P (2021) Molecular insights into substrate recognition and catalysis by phthalate dioxygenase from Comamonas testosteroni. J Biol Chem 297:101416. https://doi.org/10.1016/j.jbc.2021.101416 PubMed DOI PMC
Mahto JK, Sharma M, Neetu N, Kayastha A, Aggarwal S, Kumar P (2022) Conformational flexibility enables catalysis of phthalate cis-4,5-dihydrodiol dehydrogenase. Arch Biochem Biophys 727:109314. https://doi.org/10.1016/j.abb.2022.109314 PubMed DOI
Mohan S, Mamane H, Avisar D, Gozlan I, Kaplan A, Dayalan G (2019) Treatment of diethyl phthalate leached from plastic products in municipal solid waste using an ozone-based advanced oxidation process. Materials (basel) 12:24. https://doi.org/10.3390/ma12244119 DOI
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Pandey S, Maiti TK (2022) Phthalates - a family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. Environ Res 214:114059. https://doi.org/10.1016/j.envres.2022.114059 PubMed DOI
Naveen KV, Saravanakumar K, Zhang X, Sathiyaseelan A, Wang MH (2022) Impact of environmental phthalate on human health and their bioremediation strategies using fungal cell factory- a review. Environ Res 214:113781. https://doi.org/10.1016/j.envres.2022.113781 PubMed DOI
Pang X, Skillen N, Gunaratne N, Rooney DW, Robertson PKJ (2021) Removal of phthalates from aqueous solution by semiconductor photocatalysis: a review. J Hazard Mater 402:123461. https://doi.org/10.1016/j.jhazmat.2020.123461 PubMed DOI
Podlecka D, Gromadzińska J, Mikołajewska K, Fijałkowska B, Stelmach I, Jerzynska J (2020) Longitudinal effect of phthalates exposure on allergic diseases in children. Ann Allergy, Asthma Immunol 125:84–89. https://doi.org/10.1016/j.anai.2020.03.022 PubMed DOI
Qiu L, Li C, Fu Y, Wang Y, Zhang Z, Zuo Z, Chen R, Yin X, Li T, Wu S (2023) Biodegradation of phthalate isomers by newly isolated Klebsiella variico SY1 and its functional genomic analysis. Int Biodeterior Biodegrad 178:105557. https://doi.org/10.1016/j.ibiod.2022.105557 DOI
Ren L, Jia Y, Ruth N, Qiao C, Wang J, Zhao B, Yan Y (2016) Biodegradation of phthalic acid esters by a newly isolated Mycobacterium sp. YC-RL4 and the bioprocess with environmental samples. Environ Sci Pollut Res 23:16609–16619. https://doi.org/10.1007/s11356-016-6829-4 DOI
Sasoh M, Masai E, Ishibashi S, Hara H, Kamimura N, Miyauchi K, Fukuda M (2006) Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Appl Environ Microbiol 72:1825–1832. https://doi.org/10.1128/AEM.72.3.1825-1832.2006 PubMed DOI PMC
Shariati S, Pourbabaee AA, Alikhani HA, Rezaei KA (2022) Anaerobic biodegradation of phthalic acid by an indigenous Ralstonia pickettii strain SHAn2 isolated from Anzali international wetland. Int J Environ Sci Technol 19:4827–4838. https://doi.org/10.1007/s13762-021-03677-5 DOI
Shoshtari-Yeganeh B, Zarean M, Mansourian M, Riahi R, Poursafa P, Teiri H, Rafiei N, Dehdashti B, Kelishadi R (2019) Systematic review and meta-analysis on the association between phthalates exposure and insulin resistance. Environ Sci Pollut Res 26:9435–9442. https://doi.org/10.1007/s11356-019-04373-1 DOI
Trasande L, Sathyanarayana S, Spanier AJ, Trachtman H, Attina TM, Urbina EM (2013) Urinary phthalates are associated with higher blood pressure in childhood. J Pediatr 163:747-753.e1. https://doi.org/10.1016/j.jpeds.2013.03.072 PubMed DOI PMC
Vamsee-Krishna C, Mohan Y, Phale PS (2006) Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl Microbiol Biotechnol 72:1263–1269. https://doi.org/10.1007/s00253-006-0413-7 PubMed DOI
Vural C, Diallo MM, Ozdemir G (2022) Assessment of Comamonas testosteroni strain PT9 as a rapid phthalic acid degrader for industrial wastewaters. J Basic Microbiol 62:508–517. https://doi.org/10.1002/jobm.202100258 PubMed DOI
Wang JQ, Liang CM, Hu YB, Xia X, Li ZJ, Gao H, Sheng J, Huang K, Wang SF, Zhu P, Hao JH, Tao FB (2022) The effect of phthalates exposure during pregnancy on asthma in infants aged 0 to 36 months: a birth cohort study. Environ Geochem Health 45:1951–1974. https://doi.org/10.1007/s10653-022-01320-x PubMed DOI
Wang YZ, Zhou Y, Zylstra GJ (1995) Molecular analysis of isophthalate and terephthalate degradation by comamonas testosteroni YZW-D. Environ Health Perspect 103:9–12. https://doi.org/10.1289/ehp.95103s49 PubMed DOI PMC
Wilkes RA, Waldbauer J, Caroll A, Nieto-Domínguez M, Parker DJ, Zhang L, Guss AM, Aristilde L (2023) Complex regulation in a Comamonas platform for diverse aromatic carbon metabolism. Nat Chem Biol 19:651–662. https://doi.org/10.1038/s41589-022-01237-7 PubMed DOI PMC
Xiong YH, Pei DS (2021) A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems. Chemosphere 277:130256. https://doi.org/10.1016/j.chemosphere.2021.130256 PubMed DOI
Yastrebova OV, Malysheva AA, Plotnikova EG (2022) Halotolerant terephthalic acid-degrading bacteria of the genus Glutamicibacter. Appl Biochem Microbiol 58:590–597. https://doi.org/10.1134/S0003683822050167 DOI
Zhao Z, Liu Y, Liu C, Xu Q, Song M, Yan H (2023) Whole-genome analysis of Comamonas sp. USTBZA1 for biodegrading diethyl phthalate. 3 Biotech 13:1–11. https://doi.org/10.1007/s13205-023-03736-3 DOI