Optical-Helicity-Dependent Orbital and Spin Dynamics in Two-Dimensional Ferromagnets
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38810216
PubMed Central
PMC11163468
DOI
10.1021/acs.jpclett.4c01152
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Disentangling orbital (OAM) and spin (SAM) angular momenta in the ultrafast spin dynamics of two-dimensional (2D) ferromagnets on subfemtoseconds is a challenge in the field of ultrafast magnetism. Herein, we employed a non-collinear spin version of real-time time-dependent density functional theory to investigate the orbital and spin dynamics of the 2D ferromagnets Fe3GeTe2 (FGT) induced by circularly polarized light. Our results show that the demagnetization of the Fe sublattice in FGT is accompanied by helicity-dependent precession of the OAM and SAM excited by circularly polarized lasers. We further identify that precession of the OAM and SAM in FGT is faster than demagnetization within a few femtoseconds. Remarkably, circularly polarized lasers can significantly induce a periodic transverse linear response of the OAM and SAM on very ultrafast time scales of ∼600 attoseconds. Our finding suggests a powerful new route for attosecond regimes of the angular momentum manipulation to coherently control helicity-dependent orbital and spin dynamics in 2D ferromagnets.
Institute for Advanced Study Chengdu University Chengdu 610106 China
School of Science Constructor University Bremen 28759 Germany
See more in PubMed
Hofherr M.; Häuser S.; Dewhurst J. K.; Tengdin P.; Sakshath S.; Nembach H. T.; Weber S. T.; Shaw J. M.; Silva T. J.; Kapteyn H. C.; Cinchetti M.; Rethfeld B.; Murnane M. M.; Steil D.; Stadtmüller B.; Sharma S.; Aeschlimann M.; Mathias S. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 2020, 6, eaay871710.1126/sciadv.aay8717. PubMed DOI PMC
Sharma S.; Shallcross S.; Elliott P.; Dewhurst J. K. Making a case for femto-phono-magnetism with FePt. Sci. Adv. 2022, 8, eabq202110.1126/sciadv.abq2021. PubMed DOI PMC
Němec P.; Fiebig M.; Kampfrath T.; Kimel A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 2018, 14, 229–241. 10.1038/s41567-018-0051-x. DOI
Siegrist F.; Gessner J. A.; Ossiander M.; Denker C.; Chang Y.-P.; Schröder M. C.; Guggenmos A.; Cui Y.; Walowski J.; Martens U.; Dewhurst J. K.; Kleineberg U.; Münzenberg M.; Sharma S.; Schultze M. Light-wave dynamic control of magnetism. Nature 2019, 571, 240–244. 10.1038/s41586-019-1333-x. PubMed DOI
Tudosa I.; Stamm C.; Kashuba A. B.; King F.; Siegmann H. C.; Stöhr J.; Ju G.; Lu B.; Weller D. The ultimate speed of magnetic switching in granular recording media. Nature 2004, 428, 831–833. 10.1038/nature02438. PubMed DOI
Chumak A. V.; Serga A. A.; Hillebrands B. Magnon transistor for all-magnon data processing. Nat. Commun. 2014, 5, 4700.10.1038/ncomms5700. PubMed DOI PMC
Wolf S. A.; Awschalom D. D.; Buhrman R. A.; Daughton J. M.; von Molnár S.; Roukes M. L.; Chtchelkanova A. Y.; Treger D. M. Spintronics: a spin-based electronics vision for the future. Science 2001, 294, 1488–1495. 10.1126/science.1065389. PubMed DOI
Lambert C.-H.; Mangin S.; Varaprasad B. S. D. C. S.; Takahashi Y. K.; Hehn M.; Cinchetti M.; Malinowski G.; Hono K.; Fainman Y.; Aeschlimann M.; Fullerton E. E. All-optical control of ferromagnetic thin films and nanostructures. Science 2014, 345, 1337–1340. 10.1126/science.1253493. PubMed DOI
Chen Z.; Wang L.-W. Role of initial magnetic disorder: a time-dependent ab initio study of ultrafast demagnetization mechanisms. Sci. Adv. 2019, 5, eaau800010.1126/sciadv.aau8000. PubMed DOI PMC
Beaulieu S.; Dong S.; Tancogne-Dejean N.; Dendzik M.; Pincelli T.; Maklar J.; Xian R. P.; Sentef M. A.; Wolf M.; Rubio A.; Rettig L.; Ernstorfer R. Ultrafast dynamical Lifshitz transition. Sci. Adv. 2021, 7, eabd927510.1126/sciadv.abd9275. PubMed DOI PMC
Xu J.; Chen D.; Meng S. Decoupled ultrafast electronic and structural phase transitions in photoexcited monoclinic VO2. Sci. Adv. 2022, 8, eadd239210.1126/sciadv.add2392. PubMed DOI PMC
Fei Z.; Huang B.; Malinowski P.; Wang W.; Song T.; Sanchez J.; Yao W.; Xiao D.; Zhu X.; May A. F.; Wu W.; Cobden D. H.; Chu J.-H.; Xu X. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. 10.1038/s41563-018-0149-7. PubMed DOI
Zhang P.; Chung T.-F.; Li Q.; Wang S.; Wang Q.; Huey W. L. B.; Yang S.; Goldberger J. E.; Yao J.; Zhang X. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 2022, 21, 1373.10.1038/s41563-022-01354-7. PubMed DOI
Boeglin C.; Beaurepaire E.; Halté V.; López-Flores V.; Stamm C.; Pontius N.; Dürr H. A.; Bigot J. Y. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 2010, 465, 458–461. 10.1038/nature09070. PubMed DOI
Beaurepaire E.; Merle J. C.; Daunois A.; Bigot J. Y. Ultrafast Spin Dynamics in Ferromagnetic Nickel. Phys. Rev. Lett. 1996, 76, 4250–4253. 10.1103/PhysRevLett.76.4250. PubMed DOI
Hohlfeld J.; Matthias E.; Knorren R.; Bennemann K. H. Nonequilibrium Magnetization Dynamics of Nickel. Phys. Rev. Lett. 1997, 78, 4861–4864. 10.1103/PhysRevLett.78.4861. DOI
Bigot J.-Y.; Vomir M.; Beaurepaire E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Phys. 2009, 5, 515–520. 10.1038/nphys1285. DOI
Bovensiepen U. Magnetism in step with light. Nat. Phys. 2009, 5, 461–463. 10.1038/nphys1322. DOI
Liu B.; Liu S.; Yang L.; Chen Z.; Zhang E.; Li Z.; Wu J.; Ruan X.; Xiu F.; Liu W.; He L.; Zhang R.; Xu Y. Light-tunable ferromagnetism in atomically thin Fe3GeTe2 driven by femtosecond laser pulse. Phys. Rev. Lett. 2020, 125, 26720510.1103/PhysRevLett.125.267205. PubMed DOI
Stanciu C. D.; Hansteen F.; Kimel A. V.; Kirilyuk A.; Tsukamoto A.; Itoh A.; Rasing T. All-Optical Magnetic Recording with Circularly Polarized Light. Phys. Rev. Lett. 2007, 99, 04760110.1103/PhysRevLett.99.047601. PubMed DOI
Vahaplar K.; Kalashnikova A. M.; Kimel A. V.; Hinzke D.; Nowak U.; Chantrell R.; Tsukamoto A.; Itoh A.; Kirilyuk A.; Rasing T. Ultrafast Path for Optical Magnetization Reversal via a Strongly Nonequilibrium State. Phys. Rev. Lett. 2009, 103, 11720110.1103/PhysRevLett.103.117201. PubMed DOI
Da̧browski M.; Guo S.; Strungaru M.; Keatley P. S.; Withers F.; Santos E. J. G.; Hicken R. J. All-optical control of spin in a 2D van der Waals magnet. Nat. Commun. 2022, 13, 5976.10.1038/s41467-022-33343-4. PubMed DOI PMC
Hertel R. Theory of the inverse Faraday effect in metals. J. Magn. Magn. Mater. 2006, 303, L1–L4. 10.1016/j.jmmm.2005.10.225. DOI
Ali S.; Davies J. R.; Mendonca J. T. Inverse Faraday Effect with Linearly Polarized Laser Pulses. Phys. Rev. Lett. 2010, 105, 03500110.1103/PhysRevLett.105.035001. PubMed DOI
Cornelissen T. D.; Córdoba R.; Koopmans B. Microscopic model for all optical switching in ferromagnets. Appl. Phys. Lett. 2016, 108, 14240510.1063/1.4945660. DOI
Khorsand A. R.; Savoini M.; Kirilyuk A.; Kimel A. V.; Tsukamoto A.; Itoh A.; Rasing T. Role of Magnetic Circular Dichroism in All-Optical Magnetic Recording. Phys. Rev. Lett. 2012, 108, 12720510.1103/PhysRevLett.108.127205. PubMed DOI
Takahashi Y. K.; Medapalli R.; Kasai S.; Wang J.; Ishioka K.; Wee S. H.; Hellwig O.; Hono K.; Fullerton E. E. Accumulative Magnetic Switching of Ultrahigh-Density Recording Media by Circularly Polarized Light. Phys. Rev. Appl. 2016, 6, 05400410.1103/PhysRevApplied.6.054004. DOI
Gorchon J.; Yang Y.; Bokor J. Model for multishot all-thermal all-optical switching in ferromagnets. Phys. Rev. B 2016, 94, 02040910.1103/PhysRevB.94.020409. DOI
Bergeard N.; López-Flores V.; Halté V.; Hehn M.; Stamm C.; Pontius N.; Beaurepaire E.; Boeglin C. Ultrafast angular momentum transfer in multisublattice ferrimagnets. Nat. Commun. 2014, 5, 3466.10.1038/ncomms4466. PubMed DOI
Battiato M.; Carva K.; Oppeneer P. M. Superdiffusive Spin Transport as a Mechanism of Ultrafast Demagnetization. Phys. Rev. Lett. 2010, 105, 02720310.1103/PhysRevLett.105.027203. PubMed DOI
Malinowski G.; Dalla Longa F.; Rietjens J. H. H.; Paluskar P. V.; Huijink R.; Swagten H. J. M.; Koopmans B. Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nat. Phys. 2008, 4, 855–858. 10.1038/nphys1092. DOI
Krieger K.; Elliott P.; Müller T.; Singh N.; Dewhurst J. K.; Gross E. K. U.; Sharma S. Ultrafast demagnetization in bulk versus thin films: an ab initio study. J. Phys.: Condens. Matter 2017, 29, 22400110.1088/1361-648X/aa66f2. PubMed DOI
Dewhurst J. K.; Elliott P.; Shallcross S.; Gross E. K. U.; Sharma S. Laser-induced intersite spin transfer. Nano Lett. 2018, 18, 1842–1848. 10.1021/acs.nanolett.7b05118. PubMed DOI
Sinha-Roy R.; Hurst J.; Manfredi G.; Hervieux P.-A. Driving orbital magnetism in metallic nanoparticles through circularly polarized light: a real-time TDDFT study. ACS Photonics 2020, 7, 2429–2439. 10.1021/acsphotonics.0c00462. DOI
Scheid P.; Sharma S.; Malinowski G.; Mangin S.; Lebègue S. Ab initio study of helicity-dependent light-induced demagnetization: from the optical regime to the extreme ultraviolet regime. Nano Lett. 2021, 21, 1943–1947. 10.1021/acs.nanolett.0c04166. PubMed DOI
Neufeld O.; Tancogne-Dejean N.; De Giovannini U.; Hübener H.; Rubio A. Attosecond magnetization dynamics in non-magnetic materials driven by intense femtosecond lasers. NPJ. Comput. Mater. 2023, 9, 39.10.1038/s41524-023-00997-7. DOI
Tan C.; Lee J.; Jung S.-G.; Park T.; Albarakati S.; Partridge J.; Field M. R.; McCulloch D. G.; Wang L.; Lee C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.10.1038/s41467-018-04018-w. PubMed DOI PMC
Li D.; Haldar S.; Drevelow T.; Heinze S. Tuning the magnetic interactions in van der Waals Fe3GeTe2 heterostructures: A comparative study of ab initio methods. Phys. Rev. B 2023, 107, 10442810.1103/PhysRevB.107.104428. DOI
Li D.; Haldar S.; Heinze S. Proposal for All-Electrical Skyrmion Detection in van der Waals Tunnel Junctions. Nano Lett. 2024, 24, 2496–2502. 10.1021/acs.nanolett.3c04238. PubMed DOI
Li D.; Haldar S.; Heinze S. Strain-driven zero-field near-10 nm skyrmions in two-dimensional van der Waals heterostructures. Nano Lett. 2022, 22, 7706–7713. 10.1021/acs.nanolett.2c03287. PubMed DOI
Li D.; Haldar S.; Heinze S.. Prediction of stable nanoscale skyrmions in monolayer Fe5GeTe2. arXiv preprint arXiv: arxiv.org/abs/2401.18000, 2024.
Wang H.; Wu H.; Zhang J.; Liu Y.; Chen D.; Pandey C.; Yin J.; Wei D.; Lei N.; Shi S.; Lu H.; Li P.; Fert A.; Wang K. L.; Nie T.; Zhao W. Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators. Nat. Commun. 2023, 14, 5173.10.1038/s41467-023-40714-y. PubMed DOI PMC
Zhang Y.; Lu H.; Zhu X.; Tan S.; Feng W.; Liu Q.; Zhang W.; Chen Q.; Liu Y.; Luo X.; Xie D.; Luo L.; Zhang Z.; Lai X. Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2. Sci. Adv. 2018, 4, eaao679110.1126/sciadv.aao6791. PubMed DOI PMC
Wang X.; Tang J.; Xia X.; He C.; Zhang J.; Liu Y.; Wan C.; Fang C.; Guo C.; Yang W.; Guang Y.; Zhang X.; Xu H.; Wei J.; Liao M.; Lu X.; Feng J.; Li X.; Peng Y.; Wei H.; Yang R.; Shi D.; Zhang X.; Han Z.; Zhang Z.; Zhang G.; Yu G.; Han X. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw890410.1126/sciadv.aaw8904. PubMed DOI PMC
He J.; Li S.; Bandyopadhyay A.; Frauenheim T. Unravelling Photoinduced Interlayer Spin Transfer Dynamics in Two-Dimensional Nonmagnetic-Ferromagnetic van der Waals Heterostructures. Nano Lett. 2021, 21, 3237–3244. 10.1021/acs.nanolett.1c00520. PubMed DOI
Li M.; He J. Terahertz Laser Pulse Boosts Interlayer Spin Transfer in Two-Dimensional van der Waals Magnetic Heterostructures. J. Phys. Chem. Lett. 2023, 14, 11274–11280. 10.1021/acs.jpclett.3c03000. PubMed DOI PMC
He J.; Frauenheim T.; Li S. Ultrafast Chiral Precession of Spin and Orbital Angular Momentum Induced by Circularly Polarized Laser Pulse in Elementary Ferromagnets. J. Phys. Chem. Lett. 2024, 15, 2493–2498. 10.1021/acs.jpclett.4c00291. PubMed DOI PMC
Dewhurst J. K.; Shallcross S.; Elliott P.; Eisebitt S.; Schmising C. v. K.; Sharma S. Angular momentum redistribution in laser-induced demagnetization. Phys. Rev. B 2021, 104, 05443810.1103/PhysRevB.104.054438. DOI
Gong C.; Li L.; Li Z.; Ji H.; Stern A.; Xia Y.; Cao T.; Bao W.; Wang C.; Wang Y.; Qiu Z. Q.; Cava R. J.; Louie S. G.; Xia J.; Zhang X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. 10.1038/nature22060. PubMed DOI
Huang B.; Clark G.; Navarro-Moratalla E.; Klein D. R.; Cheng R.; Seyler K. L.; Zhong D.; Schmidgall E.; McGuire M. A.; Cobden D. H.; Yao W.; Xiao D.; Jarillo-Herrero P.; Xu X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. 10.1038/nature22391. PubMed DOI
Zhang P.; Chung T.-F.; Li Q.; Wang S.; Wang Q.; Huey W. L. B.; Yang S.; Goldberger J. E.; Yao J.; Zhang X. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 2022, 21, 1373–1378. 10.1038/s41563-022-01354-7. PubMed DOI
Huang B.; Clark G.; Klein D. R.; MacNeill D.; Navarro-Moratalla E.; Seyler K. L.; Wilson N.; McGuire M. A.; Cobden D. H.; Xiao D.; Yao W.; Jarillo-Herrero P.; Xu X. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548. 10.1038/s41565-018-0121-3. PubMed DOI
Jiang S.; Li L.; Wang Z.; Mak K. F.; Shan J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553. 10.1038/s41565-018-0135-x. PubMed DOI
Song T.; Fei Z.; Yankowitz M.; Lin Z.; Jiang Q.; Hwangbo K.; Zhang Q.; Sun B.; Taniguchi T.; Watanabe K.; McGuire M. A.; Graf D.; Cao T.; Chu J.-H.; Cobden D. H.; Dean C. R.; Xiao D.; Xu X. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298–1302. 10.1038/s41563-019-0505-2. PubMed DOI
Bhoi D.; Gouchi J.; Hiraoka N.; Zhang Y.; Ogita N.; Hasegawa T.; Kitagawa K.; Takagi H.; Kim K. H.; Uwatoko Y. Nearly room-temperature ferromagnetism in a pressure-induced correlated metallic state of the van der Waals insulator CrGeTe3. Phys. Rev. Lett. 2021, 127, 21720310.1103/PhysRevLett.127.217203. PubMed DOI
Verzhbitskiy I. A.; Kurebayashi H.; Cheng H.; Zhou J.; Khan S.; Feng Y. P.; Eda G. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 2020, 3, 460–465. 10.1038/s41928-020-0427-7. DOI
Choi Y.-G.; Jo D.; Ko K.-H.; Go D.; Kim K.-H.; Park H. G.; Kim C.; Min B.-C.; Choi G.-M.; Lee H.-W. Observation of the orbital Hall effect in a light metal Ti. Nature 2023, 619, 52–56. 10.1038/s41586-023-06101-9. PubMed DOI
Hu S.-Q.; Meng S. Ultrafast Condensed Matter Physics at Attoseconds. Chin. Phys. Lett. 2023, 40, 11780110.1088/0256-307X/40/11/117801. DOI
Wu N.; Zhang S.; Chen D.; Wang Y.; Meng S. Three-stage ultrafast demagnetization dynamics in a monolayer ferromagnet. Nat. Commun. 2024, 15, 2804.10.1038/s41467-024-47128-4. PubMed DOI PMC
Tauchert S. R.; Volkov M.; Ehberger D.; Kazenwadel D.; Evers M.; Lange H.; Donges A.; Book A.; Kreuzpaintner W.; Nowak U.; Baum P. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 2022, 602, 73–77. 10.1038/s41586-021-04306-4. PubMed DOI