Hot spring oases in the periglacial desert as the Last Glacial Maximum refugia for temperate trees in Central Europe

. 2024 May 31 ; 10 (22) : eado6611. [epub] 20240531

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38820152

Northern glacial refugia are a hotly debated concept. The idea that many temperate organisms survived the Last Glacial Maximum (LGM; ~26.5 to 19 thousand years) in several sites across central and northern Europe stems from phylogeographic analyses, yet direct fossil evidence has thus far been missing. Here, we present the first unequivocal proof that thermophilous trees such as oak (Quercus), linden (Tilia), and common ash (Fraxinus excelsior) survived the LGM in Central Europe. The persistence of the refugium was promoted by a steady influx of hydrothermal waters that locally maintained a humid and warm microclimate. We reconstructed the geological and palaeohydrological factors responsible for the emergence of hot springs during the LGM and argue that refugia of this type, allowing the long-term survival and rapid post-LGM dispersal of temperate elements, were not exceptional in the European periglacial zone.

Zobrazit více v PubMed

Frenzel B., The Pleistocene vegetation of northern Eurasia. Science 161, 637–649 (1968). PubMed

Bennett K. D., Tzedakis P. C., Willis K. J., Quaternary refugia of North European trees. J. Biogeogr. 18, 103–115 (1991).

Hewitt G. H., The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000). PubMed

Bilton D. T., Mirol P. M., Mascheretti S., Fredga K., Zima J., Searle J. B., Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc. Biol. Sci. 265, 1219–1226 (1998). PubMed PMC

Petit R. J., Aguinagalde I., de Beaulieu J.-L., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M., Mohanty A., Müller-Starck G., Demesure-Musch B., Palmé A., Martín J. P., Rendell S., Vendramin G. G., Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003). PubMed

Schmitt T., Varga Z., Extra-Mediterranean refugia: The rule and not the exception? Front. Zool. 9, 22 (2012). PubMed PMC

Faria C. M., Shaw P., Emerson B. C., Evidence for the Pleistocene persistence of Collembola in Great Britain. J. Biogeogr. 46, 1479–1493 (2019).

Willis K. J., Andel T. H., Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quat. Sci. Rev. 23, 2369–2387 (2004).

Parducci L., Jorgensen T., Tollefsrud M. M., Elverland E., Alm T., Fontana S. L., Bennett K. D., Haile J., Matetovici I., Suyama Y., Edwards M. E., Andersen K., Rasmussen M., Boessenkool S., Coissac E., Brochmann C., Taberlet P., Houmark-Nielsen M., Larsen N. J. K., Orlando L., Gilbert M. T. P., Kjaer K. H., Alsos I. G., Willerslev E., Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012). PubMed

Stewart J. R., Lister A. M., Cryptic northern refugia and the origins of the modern biota. Trends Ecol. Evol. 16, 608–613 (2001).

Kotlík P., Deffontaine V., Mascheretti S., Searle J. B., A northern glacial refugium for bank voles (Clethrionomys glareolus). Proc. Natl. Acad. Sci. U.S.A. 103, 14860–14864 (2006). PubMed PMC

Sommer R. S., Nadachowski A., Glacial refugia of mammals in Europe: Evidence from fossil records. Mammal Rev. 36, 251–265 (2006).

Vega R., Phylogeographical structure of the pygmy shrew: Revisiting the roles of southern and northern refugia in Europe. Biol. J. Linn. Soc. 129, 901–917 (2020).

Birks H. J. B., Willis K. J., Alpines, trees, and refugia in Europe. Europe Plant Ecol. Div. 1, 147–160 (2008).

Provan J., Bennett K. D., Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008). PubMed

McLachlan J. S., Clark J. S., Manos P. S., Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098 (2005).

Ohlemüller R., Huntley B., Normand S., J. C, Svenning, Potential source and sink locations for climate-driven species range shifts in Europe since the Last Glacial Maximum. Glob. Ecol. Biogeogr. 21, 152–163 (2012).

Leroy S. A., Arpe K., Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J. Biogeogr. 34, 2115–2128 (2007).

Svenning J.-C., Normand S., Kageyama M., Glacial refugia of temperate trees in Europe: Insights from species distribution modelling. J. Ecol. 96, 1117–1127 (2008).

Arpe K., Leroy S. A. G., Mikolajewicz U., A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summer-green tree refugia. Clim. Past 7, 91–114 (2011).

Slovák M., Kučera J., Turis P., Zozomová-Lihová J., Multiple glacial refugia and postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens: Patterns concordant with the Pleistocene history of broadleaved and coniferous tree species. Biol. J. Linn. Soc. 105, 741–760 (2012).

Mitka J., Bąba W., Szczepanek K., Putative forest glacial refugia in the Western and Eastern Carpathians. Mod. Phytomorphol. 5, 85–92 (2014).

Kaplan J. O., Pfeiffer M., Kolen J. C., Davis B. A., Large scale anthropogenic reduction of forest cover in Last Glacial Maximum Europe. PLOS ONE 11, 0166726 (2016). PubMed PMC

Tzedakis P. C., Emerson B. C., Hewitt G. M., Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol. Evol. 28, 696–704 (2013). PubMed

Marshall J. A., Roering J. J., Bartlein P. J., Granger D. G., Rempel A. W., Praskievicz S. J., Hales T. C., Frost for the trees: Did climate increase erosion in unglaciated landscapes during the late Pleistocene? Sci. Adv. 1, 1500715 (2015). PubMed PMC

Schaller M., A 30 000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces. Earth Planet. Sci. Lett. 204, 307–320 (2002).

Hošek J., Radoměřský T., Křížek M., Late Glacial thermokarst phenomena on the northern margin of the Vienna Basin (Czech Republic). Geosci. Res. Rep. 53, 65–72 (2020).

Kadlec J., Kocurek G., Mohrig D., Shinde D. P., Murari M. K., Varma V., Stehlik F., Benes V., Singhvi A. K., Response of fluvial, aeolian, and lacustrine systems to late Pleistocene to Holocene climate change, Lower Moravian Basin, Czech Republic. Geomorphology 232, 193–208 (2015).

R. O. Fournier, A. M. Pitt. The Yellowstone magmatichydrothermal system, USA. 1985 International Symposium on Geothermal Energy: International Volume. (Cal Central Press, Sacramento, 1985).

Campbell K. A., Geyserite in hot–spring siliceous sinter: Window on Earth’s hottest terrestrial (paleo)environment and its extreme life. Earth Sci. Rev. 148, 44–64 (2015).

Lynne B. Y., Campbell K. A., Moore J. N., Browne P. R. L., Origin and evolution of the Steamboat Springs siliceous sinter deposit, Nevada, U.S.A. Sediment. Geol. 210, 111–131 (2008).

Lynne B. Y., Mapping vent to distal-apron hot spring paleo-flow pathways using siliceous sinter architecture. Geothermics 43, 3–24 (2012).

Lowenstern J. B., Hurwitz S., McGeehin J. P., Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park. J. Volcanol. Geotherm. Res. 310, 132–136 (2016).

Slagter S., Reich M., Munoz-Saez C., Southon J., Morata D., Barra F., Gong J., Skok J. R., Environmental controls on silica sinter formation revealed by radiocarbon dating. Geology 47, 330–334 (2019).

Hurwitz S., Lowenstern J. B., Dynamics of the Yellowstone hydrothermal system. Rev. Geophys. 52, 375–411 (2014).

Fowler A. P. G., Tan C., Luttrell K., Tudor A., Scheuermann P., Shanks W. C. P., Seyfried W. E., Geochemical heterogeneity of sublacustrine hydrothermal vents in Yellowstone Lake, Wyoming. J. Volcanol. Geotherm. Res. 386, 106677 (2019).

Fagan W. F., Swain A., Banerjee A., Ranade H., Thompson P., Staniczenko P. P. A., Quantifying interdependencies in geyser eruptions at the Upper Geyser Basin, Yellowstone National Park. J. Geophys. Res. Solid Earth 127, e2021JB023749 (2022).

Buechler W. K., Variability of venation patterns in extant genus Salix: Implications for fossil taxonomy. PaleoBios. 30, 89–104 (2014).

Pereira A., Ferreira V., Invasion of native riparian forests by Acacia species affects in-stream litter decomposition and associated microbial decomposers. Microb. Ecol. 81, 14–25 (2020). PubMed

R. Govaerts, D. G. Frodin, World Checklist and Bibliography of Fagales (Royal Botanic Gardens, 1998).

G. Lang, B. Ammann, K.-E. Behre, W. Tinner, Quaternary Vegetation Dynamics of Europe (Haupt Verlag, 2023).

J. H. Ietswaart, Feij A. E., A multivariate analysis of introgression between Quercus robur and Q. petraea in The Netherlands. Acta Bot. Neerl. 38, 313–325 (1989).

Dupouey J. L., Badeau V., Morphological variability of oaks (Quercus robur L, Quercus petraea (Matt) Liebl, Quercus pubescens Willd) in northeastern France: Preliminary results. Ann. For. Sci. 50, 35s–40s (1993).

Bacilieri R., Ducousso A., Kremer A., Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L in a mixed stand of Northwest of France. Silvae Genetica 44, 1 (1995).

Kremer A., Dupouey J. L., Deans J. D., Cottrell J., Csaikl U., Finkeldey R., Espinel S., Jensen J., Kleinschmit J., Van Dam B., Ducousso A., Forrest I., de Heredia U. L., Lowe A. J., Tutkova M., Munro R. C., Steinhoff S., Badeau V., Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann. For. Sci. 59, 777–787 (2002).

E. Barrón, A. Averyanova, Z. Kvaček, A. Momohara, K. B. Pigg, S. Popova, J. M. Postigo-Mijarra, B. Tiffney, T. Utescher, Z.-K. Zhou, The Fossil History of Quercus (Springer, 2017).

Hoffmann M., Raeder U., Predicting the potential distribution of neophytes in Southern Germany using native Najas marina as invasion risk indicator. Environ. Earth Sci. 75, 1217 (2016).

Lynne B. Y., Campbell K. A., James B. J., Browne P. R., Moore J., Tracking crystallinity in siliceous hot-spring deposits. Am. J. Sci. 307, 612–641 (2007).

Howald T., Person M., Campbell A., Lueth V., Hofstra A., Sweetkind D., Gable C. W., Banerjee A., Luijendijk E., Crossey L., Karlstrom K., Kelley S., Phillips F. M., Evidence for long timescale (>103 years) changes in hydrothermal activity induced by seismic events. Geofluids 15, 252–268 (2015).

Drake B. D., Campbell K. A., Rowland J. V., Guido D. M., Browne P. R. L., Rae A., Evolution of a dynamic paleo-hydrothermal system at Mangatete, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 282, 19–35 (2014).

Soto M. F., Hochstein M. P., Campbell K., Keys H., Sporadic and waning hot spring activity in the Tokaanu Domain, Hipaua-Waihi-Tokaanu geothermal field, Taupo Volcanic Zone, New Zealand. Geothermics 77, 288–303 (2019).

Munoz-Saez C. C., Manga M., Hurwitz S., Slagter S., Churchill D., Reich M., Damby D., Morata D., Radiocarbon dating of silica sinter and postglacial hydrothermal activity in the El Tatio geyser field. Geophys. Res. Lett. 47, e2020GL087908 (2020).

Churchill D. M., Manga M., Hurwitz S., Peek S., Licciardi J., Paces J. B., Dating silica sinter (geyserite): A cautionary tale. J. Volcanol. Geotherm. Res. 402, 106991 (2020).

Schiller C. M., Whitlock C., Elder K. L., Iverson N. A., Abbott M. B., Erroneously old radiocarbon ages from terrestrial pollen concentrates in Yellowstone Lake, Wyoming, USA. Radiocarbon 63, 321–342 (2021).

Steinke L., Slysz G. W., Lipton M. S., Klatt C., Moran J. J., Romine M. F., Wood J. M., Anderson G., Bryant D. A., Ward D. M., Short-term stable isotope probing of proteins reveals taxa incorporating inorganic carbon in a hot spring microbial mat. Appl. Environ. Microbiol. 86, e01829-19 (2020). PubMed PMC

Pasquier-Cardin A., Allard P., Ferreira T., Hatte C., Coutinho R., Fontugne M., Jaudon M., Magma-derived CO2 emissions recorded in 14C and 13C content of plants growing in Furnas caldera, Azores. J. Volcanol. Geotherm. Res. 92, 195–207 (1999).

Holdaway R. N., Duffy B., Kennedy B., Evidence for magmatic carbon bias in 14C dating of the Taupo and other major eruptions. Nat. Commun. 9, 4110 (2018). PubMed PMC

S. Björck, B. Wohlfarth, 14C Chronostratigraphic Techniques in Paleolimnology (Kluwer Academic, 2001).

Finsinger W., Schwörer C., Heiri O., Morales-Molino C., Ribolini A., Giesecke T., Haas J. N., Kaltenrieder P., Magyari E. K., Ravazzi C., Rubiales J. M., Tinner W., Fire on ice and frozen trees? Inappropriate radiocarbon dating leads to unrealistic reconstructions. New Phytol. 222, 657–662 (2019). PubMed

Holuša J., Nývlt D., Woronko B., Matějka M., Stuchlík R., Environmental factors controlling the Last Glacial multi-phase development of the Moravian Sahara dune field, Lower Moravian Basin, Central Europe. Geomorphology 413, 108355 (2022).

Seltzer A. M., Ng J., Aeschbach W., Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature 593, 228–232 (2021). PubMed

Annan J. D., Hargreaves J. C., A new global reconstruction of temperature changes at the Last Glacial Maximum. Clim. Past 9, 367–376 (2013).

Nava J. A., Morrison P., A note on hot springs in the interior of Alaska. Arctic 27, 241–243 (1974).

Clark P. U., Dyke A. S., Shakun J. D., Carlson A. E., Clark J., Wohlfarth B., Mitrovica J. X., Hostetler S. W., McCabe A. M., The last glacial maximum. Science 325, 710–714 (2009). PubMed

C. L. Parker, “Vascular plant inventory of Alaska‘S Arctic National Parklands” (Tech. Rep. NPS/AKRARCN/NRTR-2006/01, National Park Service, 2006).

Fraser C. I., Terauds A., Smellie J., Convey P., Chown S. L., Geothermal activity helps life survive glacial cycles. Proc. Natl. Acad. Sci. U.S.A. 111, 5634–5639 (2014). PubMed PMC

L. Strecker, “Botanical survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR)” (Natural Resource Report NPS/GAAR/NRR-2016/1136, National Park Service, 2016).

Kolosova Y., Potapov G., Skyutte N., Bolotov I., Bumblebees (Hymenoptera, Apidae, Bombus Latr.) of the thermal spring Pymvashor, north-east of European Russia. Entomologica Fennica. 27, 190–196 (2016).

Rybníčková E., Rybníček K., Palaeovegetation in the Pavlovské vrchy hills region (South Moravia, Czech Republic) around 25,000 BP: The Bulhary core. Veg. Hist. Archaeobotany 23, 719–728 (2014).

E. Opravil, The vegetation, in Pavlov I: Excavations 19 52-1953 (ERAUL 66/Dolní Věstonice Studies 2), J. Svoboda, Ed. (Université de Liege, 1994), pp. 175–189.

Damblon F., Haesaerts P., Van der Plicht J., New datings and considerations on the chronology of Upper Palaeolithic sites in the Great Eurasiatic Plain. Préhistoire Européenne. 9, 177–231 (1996).

Novák J., Roleček J., Dresler P., Hájek M., Soil charcoal elucidates the role of humans in the development of landscape of extreme biodiversity. Land Degrad. Dev. 30, 1607–1619 (2019).

A. Kröll, G. Wessely, R. Jiříček, F. Nemec, “Wiener Becken und angrenzende Gebiete-Geologische Einheiten des präneogenen Beckenuntergrundes” (Geologische Bundesanstalt, 1993).

Lee E. Y., Wagreich M., Polyphase tectonic subsidence evolution of the Vienna Basin inferred from quantitative subsidence analysis of the northern and central parts. Int. J. Earth Sci. 106, 687–705 (2017).

Decker K., Peresson H., Hinsch R., Active tectonics and Quaternary basin formation along the Vienna Basin Transform fault. Quat. Sci. Rev. 24, 305–320 (2005).

Schmidt M. W., Hertzberg J. E., Abrupt climate change during the last ice age. Nat. Educ. Knowledge 3, 11 (2011).

Fuhrmann F., Diensberg B., Gong X., Lohmann G., Sirocko F., Aridity synthesis for eight selected key regions of the global climate system during the last 60 000 years. Clim. Past 16, 2221–2238 (2020).

C. Prud’homme, Millennial-timescale quantitative estimates of climate dynamics in central Europe from earthworm calcite granules in loess deposits. Commun. Earth Environ. 3, 267 (2022).

Vandenberghe J., The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: Permafrost extent and mean annual air temperatures, 25–17 ka BP. Boreas 43, 652–666 (2014).

Martinez-Lamas R., Linking Danube River activity to Alpine Ice-Sheet fluctuations during the last glacial (ca. 33–17 ka BP): Insights into the continental signature of Heinrich Stadials. Quat. Sci. Rev. 229, 106136 (2020).

Pivko D., Vojtko R., A review of travertines and tufas in Slovakia: Geomorphology, environments, tectonic pattern, and age distribution. Acta Geol. Slovaca 13, 49–78 (2021).

Seguinot J., Modelling last glacial cycle ice dynamics in the Alps. Cryosphere. 12, 3265–3285 (2018).

Sutkowska A., Pasierbiński A. K., Warzecha T., Mandal A., Mitka J., Refugial pattern of Bromus erectus in Central Europe based on ISSR fingerprinting. Acta Biol. Cracov. Bot. 55, 107–119 (2013).

Willis K. J., Sümegi P., Braun M., Tóth A., The late Quaternary environmental history of Bátorliget, N.E. Hungary. Palaegeogr. Palaeoclimatol. Palaeoecol. 118, 25–47 (1995).

Magri D., Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450–463 (2008).

Juřičková L., Horáčková J., Ložek V., Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quatern. Res. 82, 222–228 (2014).

Šolcová A., Abrupt vegetation and environmental change since the MIS 2: A unique paleorecord from Slovakia (Central Europe). Quat. Sci. Rev. 230, 106170 (2020).

Molnár Á. P., Demeter L., Biró M., Chytrý M., Bartha S., Gantuya B., Molnár Z., Is there a massive glacial–Holocene flora continuity in Central Europe? Biol. Rev. 98, 2307–2319 (2023). PubMed

Náfrádi K., Sümegi P., The Forest Refugium of the Bükk Mountains, Hungary—Vegetation Change and Human Impact from the Late Pleistocene. Diversity 16, 109 (2024).

Reimer P. J., The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal. kBP). Radiocarbon 62, 725–757 (2020).

Raymer A. K., Gobakken T., Solberg B., Hoen H. F., Bergseng E., A forest optimisation model including carbon flows: Application to a forest in Norway. For. Ecol. Manage. 258, 579–589 (2009).

F. H. Schweingruber, Microscopic Wood Anatomy: Structural Variability of Stems and Twigs in Recent and Subfossil Woods From Central Europe (Zürcher, 1978).

W. Schoch, I. Heller, F. H. Schweingruber, F. Kienast, Wood Anatomy of Central European Species (Swiss Federal Institute for Forest, 2004).

B. E. Berglund, M. Ralska-Jasieviczowa, Handbook of the Holocene Palaeoecology and Palaeohydrology (Blackburn Press, 2003).

Martin R., Mildenhall D. C., Browne P. R., Rodgers K. A., The age and significance of in-situ sinter at the Te Kopia thermal area, Taupo Volcanic Zone New Zealand. Geothermics 29, 367–375 (2000).

M. Reille, Pollen et spores d’Europe et d’Afrique du Nord (Laboratoire de Botanique historique et Palynologie, 1992).

M. Reille, Pollen et spores d’Europe et d’Afrique du Nord - Supplement 1 (Laboratoire de Botanique historique et Palynologie, 1995).

M. Reille, Pollen et spores d’Europe et d’Afrique du Nord - Supplement 2 (Laboratoire de Botanique historique et Palynologie, 1998).

H. J. Beug, Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (Verlag Dr. Friedrich Pfeil, 2004).

Sharp Z. D., A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta. 54, 1353–1357 (1990).

Pack A., The oxygen isotope composition of San Carlos olivine on the VSMOW2-SLAP2 scale. Rapid Commun. Mass Spectrom. 30, 1495–1504 (2016). PubMed

Peters S. T. M., Triple oxygen isotope variations in magnetite from iron-oxide deposits, central Iran, record magmatic fluid interaction with evaporite and carbonate host rocks. Geology 48, 211–215 (2020).

Sharp Z. D., A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples. Geochim. Cosmochim. Acta. 186, 105–119 (2016).

Wostbrock J. A. G., Cano E. J., Z. S. D, An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2. Chem. Geol. 533, 119432 (2020).

Pack A., Isotopic traces of atmospheric O2 in rocks, minerals, and melts. Rev. Mineral. Geochem. 86, 217–240 (2021).

J. Ehlers, P. L. Gibbard, P. D. Hughes, Quaternary Glaciations – Extent and Chronology (Elsevier, 2011).

G. Wessely, Structure and development of the Vienna basin in Austria, in The Pannonian Basin: A Study in Basin Evolution (American Association of Petroleum Geologists, 1988), vol. 45, pp. 333–346.

Boldizsár T., Geothermal data from the Vienna Basin. J. Geophys. Res. 73, 613–618 (1968).

Husen D., Reitner J. M., An outline of the Quaternary stratigraphy of Austria. Quat. Sci. J. 60, 366–387 (2011).

Miall A. D., Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth Sci. Rev. 22, 261–308 (1985).

Heaney P. J., A proposed mechanism for the growth of chalcedony. Contrib. Mineral. Petrol. 115, 66–74 (1993).

Butz S. H., Silicification. Paleontol. Soc. Paper 20, 15–34 (2014).

Mustoe G. E., Wood petrifaction: A new view of permineralization and replacement. Geosciences. 7, 119 (2017).

Herdianita N. R., Browne P. R. L., Rodgers K. A., Campbell K. A., Mineralogical and textural changes accompanying ageing of silica sinter. Miner. Deposita 35, 48–62 (2000).

Lynne B. Y., Campbell K. A., Moore J., Browne P. R. L., Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, U.S.A. Sediment. Geol. 119, 249–278 (2005).

Surma J., Assonov S., Staubwasser M., Triple oxygen isotope systematics in the hydrologic cycle. Rev. Mineral. Geochem. 86, 401–428 (2021).

Pack A., Herwartz D., The triple oxygen isotope composition of the Earth mantle and understanding ΔO17 variations in terrestrial rocks and minerals. Earth Planet. Sci. Lett. 390, 138–145 (2014).

Geilert S., Silicon isotope fractionation during precipitation from hot-spring waters: Evidence from the Geysir geothermal field, Iceland. Geochim. Cosmochim. Acta. 164, 403–427 (2015).

Wilmeth D. T., Depositional evolution of an extinct sinter mound from source to outflow, El Tatio, Chile. Sediment. Geol. 406, 105726 (2020).

Feng J. L., Zhao Z. H., Chen F., Hu H. P., Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China. J. Volcanol. Geotherm. Res. 287, 1–11 (2014).

Anders E., Grevesse N., Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

R. L. Rudnick, S. Gao, Composition of the continental crust, in The Crust Treatise on Geochemistry, H. D. Holland, K. K. Turekian, Eds. (Elsevier, 2003), vol. 4, pp. 1–64.

A. Hamilton, K. Campbell, D. M. Guido, Atlas of Siliceous Hot Spring Deposits (Sinter) and Other Silicified Surface Manifestations in Epithermal Environments (Institute of Geological and Nuclear Sciences Limited, 2019).

A. Remšík, “Liptov Basin—Regional hydrogeothermal evaluation” (Final report, Ministry of Environment, 1998).

H. A. Waldrop, K. L. Pierce, “Surficial geologic map of the Madison Junction quadrangle, Yellowstone National Park, Wyoming” (Miscellaneous Investigations I-651, US Geological Survey, 1975).

T. R. Schneider, W. D. McFarland, “Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area” (Open-File Report 95-367, US Geological Survey, 1995); 10.3133/ofr95367. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...